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Abstract

We prove the uniqueness theorem for general coagulation-fragmentation
equation. This theorem completes study of correctness of the problem
concerned for many important cases where the existence theorems had
been already proved.

Introduction

We examine the general coagulation-fragmentation equation which can be
written as

∂c(x, t)
∂t

=
1
2

∫ x

0
K(x− y, y)c(x− y, t)c(y, t)dy +

∫ ∞

0
F (x, y)c(x + y, t)dy

−c(x, t)
∫ ∞

0
K(x, y)c(y, t)dy − 1

2
c(x, t)

∫ x

0
F (x− y, y)dy, (1)

c(x, 0) = c0(x) ≥ 0. (2)

Equation (1) describes the distribution function c(x, t) ≥ 0 of particles of
mass x ≥ 0 at time t ≥ 0 whose change in mass governed by the non-negative
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reaction rates K and F which are called, respectively, the coagulation and
fragmentation kernels. The coagulation kernel K models the rate at which
particles of size x coalesce with those of size y while the kernel F expresses
the rate at which particles of size (x + y) fragment into those of sizes x
and y. From a physical point of view it is clear that K and F must be
nonnegative and symmetric: K(x, y) = K(y, x) ≥ 0, F (x, y) = F (y, x) ≥ 0
for all 0 ≤ x, y < ∞; all functions in (1), (2) are to be nonnegative and a
solution c(x, t) has to have the bounded first moment

∫ ∞

0
xc(x, t)dx < ∞

which is equal to the total mass of particles. The first two integrals in (1)
describe the growth of the number of particles of size x due to coagulation
and fragmentation respectively, while other integrals describe the reverse of
these processes. A brief physical interpretation of the integrals appearing on
the right hand side of equation (1) can be found, e.g., in [3]. Applications of
(1) can be found in many problems including chemistry (e.g. reacting poly-
mers), physics (aggregation of colloidal particles, growth of gas bubbles in
solids), astrophysics (formation of stars and planets), meteorology (merging
of drops in atmospheric clouds). Many papers are devoted to analyse the
existence for the problem concerned (e.g. [4, 6, 8, 9, 11, 14]). Results in
uniqueness are much more poor.

The uniqueness theorem for the problem concerned was proved by Melzak
[11] for bounded coagulation and fragmentation kernels with the additional
condition ∫ x

0
F (x− y, y)dy ≤ const.

Dubovski & Stewart [4] established uniqueness for coagulation kernels with
linear growth on infinity:

K(x, y) ≤ k(1 + x + y), F ≤ const (3)

in a class of functions which have bounded integral with a weight exp(λx), λ >
0: ∫ ∞

0
exp(λx)c(x, t)dx < ∞, 0 ≤ t ≤ T, 0 < λ < Λ.

In [1, 16] the uniqueness for constant coagulation and fragmentation kernels
K = F =const was demonstrated. It was shown in [8] that for kernels
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K(x, y) ≤ k(1+xαyα), α < 1, F = 0 the problem concerned can have at most
one solution in class of functions, integrable with the weight exp(λxα), λ > 0.
The next step was done by Stewart [15] who proved uniqueness for the kernels

K(x, y) ≤ k1
√

1 + x
√

1 + y,
∫ x

0

√

1 + yF (x− y, y)dy ≤ k2
√

1 + x (4)

in the natural class of functions with bounded first moment.

1. Main result

Let the coagulation kernels be symmetric and satisfy the following condition.
Suppose that for all x ≥ 0 there exists X(x) ≥ 1 such that

K(x, y) = a(x)y + b(x, y) if y ≥ X(x) (5)

and there exist positive constants λ, G such that

sup
0≤y≤X(x)

K(x, y) + sup
y≥X(x)

b(x, y) + a(x)X(x) ≤ G exp(λx), x ≥ 0. (6)

The functions a and b are to be nonnegative. The class (5), (6) includes
many physically reasonable coagulation kernels. Particularly, this class has
large intersection with coagulation kernels satisfying (3) or (4). Also, the
class (5) includes bounded coagulation kernels considered by Melzak [11],
linear kernels [4, 6] and multiplicative ones (K = (Ax + B)(Ay + B)) which
are considered, e.g., in [5, 7, 9]. In addition, this class includes the following
kernels:

K(x, y) = α(x, y) + β(y)x + β(x)y + γ(x, y)

where

γ(x, y) =
{

g1(x)x + g2(x)y + g3(x)xy, y ≥ x
g1(y)y + g2(y)x + g3(y)xy, y ≤ x.

The functions α, β and gi, i = 1, 2, 3 are to be nonnegative and bounded.

We shall consider fragmentation kernels which are nonnegative, symmet-
ric and satisfy for positive constants µ and A the following condition:

∫ x

0
F (x− y, y) exp(−µy)dy ≤ A, x ≥ 0. (7)
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This class includes bounded and a lot of other fragmentation kernels (e.g.
F (x, y) = (x + y)−1).

Let us introduce the class Y of nonnegative continuous functions of (x, t) ∈
[0,∞)× [0,∞) with the same first moment, i.e. for any c1, c2 ∈ Y

∫ ∞

0
xc1(x, t)dx =

∫ ∞

0
xc2(x, t)dx < ∞, t ≥ 0. (8)

So, the space C(R2
+) is decomposed to a lot of classes Y depending on their

first moment behaviour.
The aim of this paper is to prove the following uniqueness theorem.

Theorem. The initial value problem (1),(2) with a coagulation kernel from
the class (5) and a fragmentation kernel from (7) has at most one nonnega-
tive continuous solution in any class Y .

Remark 1. The condition (8) is very natural. In fact, if we multiply (1) by
x and integrate it over x ∈ [0,∞) then we get the mass conservation law

d
dt

∫ ∞

0
xc(x, t)dx = 0.

By deriving this important equality we assumed that all integrals are bounded.
The mass conservation takes place, e.g., for coagulation kernels with linear
growth on infinity and bounded fragmentation ones [4]. In this case the
equality (8) holds almost always [4].
Remark 2. If the kernel K does not satisfy (3) then the mass conservation
law can be infringed. This phenomenon is discussed, e.g., in [5, 7, 9, 10,
12] for the important multiplicative case K = xy, F = 0. For this case
the behaviour of the total mass (which is expressed by the first moment of
solution) is uniquely defined. In this case the condition (8) is also always
valid, and we obtain ”global” uniqueness, too.
Remark 3. In the well-known example of non-uniqueness [15, 17] with
K ≡ 0, F ≡ 2, c0(x) = (λ + x)−3, λ > 0 there are two solutions

c1(x, t) =
exp(λt)
(λ + x)3 , c2(x, t) = exp(−tx)

(

c0(x) +
∫ ∞

x
c0(y)[2t + t2(y − x)]dy

)

.
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The first solution does not satisfy the mass conservation law, but for the
second one the mass conservation holds. Therefore the condition (8) is not
valid, and this non-uniqueness meets no contradiction with the assertion of
the Theorem.
2. Auxiliary statement

Lemma. Let v(q, t) be a real continuous function having continuous partial
derivatives vq and vqq on D = {0 < q0 ≤ q ≤ q1, 0 ≤ t ≤ T}. Assume that
α(q), β(q, t), γ(q, t) and θ(q, t) are real continuous functions on D and their
first partial derivatives in q are continuous. Let v, vqq, β, γ be nonnegative
and vq, αq, βq, γq, θq be nonpositive functions on D. Suppose also, that the
following inequalities hold on D:

v(q, t) ≤ α(q) +
∫ t

0
(−β(q, s)vq(q, s) + γ(q, s)v(q, s) + θ(q, s))ds; (9)

vq(q, t) ≥ αq(q) +
∫ t

0

∂
∂q

(−β(q, s)vq(q, s) + γ(q, s)v(q, s) + θ(q, s)) ds. (10)

Let c0 = supq0≤q≤q1
α, c1 = supD β, c2 = supD γ, c3 = supD θ. Then

v(q, t) ≤ c0 exp(c2t) + (c3/c2)(exp(c2t)− 1)

in any region R ⊂ D:

R = {(q, t) : 0 ≤ t ≤ T ′; q0 + c1t ≤ q ≤ q1 − ε + c1t, 0 < ε < q1 − q0, } ,
T ′ = min{T, ε/c1}.

Proof. Let us denote w(q, t) the right-hand side of the inequality (9). By
differentiating in t, q, we obtain from (9),(10) taking nonpositivity of wq into
account:

wt ≤ −βwq + γw + θ ≤ −c1wq + γw + θ.

Hence for the derivative along the characteristic dq/dt = c1 we have

dw
dt

≤ γw + θ. (11)

Let us denote u(t) = c̄0 exp(c2t) + (c̄3/c2)(exp(c2t)− 1) with c̄0 > c0, c̄3 > c3.
Obviously, u(0) > w(q, 0) for all q0 ≤ q ≤ q1. Let (q̂, t̂) be the first point on
a characteristic straight line, where w = u. Then in the point (q̂, t̂)

d(u− w)
dt

≤ 0
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and, consequently,
wt + c1wq ≥ ut. (12)

From ut = c2u + c̄3 we see that in the point (q̂, t̂) the equality ut = c2w + c̄3

holds. Recalling (12), we obtain the contradiction with (11):

dw
dt

= wt + c1wq ≥ c2w + c̄3 > c2w + c3 ≥ γw + θ.

This proves the Lemma.

3. Proof of the Theorem

We prove the Theorem by contradiction. Suppose that there are two distinct
continuous solutions c and d of the initial value problem (1), (2) belonging
to the same class Y (i.e. with the same initial data and first moment). Let
us denote u = c− d. Then we obtain from (1):

∂u(x, t)
∂t

=
1
2

∫ x

0
K(x− y, y)u(x− y, t)(c + d)(y, t)dy −

−u(x, t)
∫ ∞

0
K(x, y)c(y, t)dy − d(x, t)

∫ ∞

0
K(x, y)u(y, t)dy −

−1
2
u(x, t)

∫ x

0
F (x− y, y)dy +

∫ ∞

0
F (x, y)u(x + y, t)dy. (13)

Let us write (13) in the following integral form

u(x, t) =
∫ t

0
exp

(

−
∫ t

s

[∫ ∞

0
K(x, y)c(y, τ)dy +

1
2

∫ x

0
F (x− y, y)dy

]

dτ
)

×
(1

2

∫ x

0
K(x− y, y)u(x− y, s)(c + d)(y, s)dy−

−d(x, t)
∫ ∞

0
K(x, y)u(y, s)dy +

∫ ∞

0
F (x, y)u(x + y, s)dy

)

ds. (14)

By utilizing (5), (6), (8), we consider the second summand in (14) sepa-
rately. The main idea is to present the ”tail” of the infinite integral

∫∞
X in

the form
∫∞
0 −

∫ X
0 and to use that the first moment of u is equal to zero

due to (8):
∫ ∞

0
K(x, y)u(y, t)dy =

∫ X(x)

0
K(x, y)u(y)dy +

∫ ∞

X(x)
(a(x)y + b(x, y))u(y, t)dy

=
∫ X(x)

0
K(x, y)u(y)dy +

∫ ∞

X(x)
b(x, y)u(y, t)dy − a(x)

∫ X(x)

0
yu(y, t)dy.
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Hence,
∣

∣

∣

∣

∫ ∞

0
K(x, y)u(y, t)dy

∣

∣

∣

∣

≤

≤
[

sup
0≤y≤X(x)

K(x, y) + sup
y≥X(x)

b(x, y) + a(x)X(x)
]

∫ ∞

0
|u(y, t)|dy. (15)

Using (15) and (6), we obtain from (14):

|u(x, t)| ≤
∫ t

0

{1
2

∫ x

0
K(x− y, y)|u(x− y, s)| · |c + d|(y, s)dy+

+G exp(λx)|d(x, s)|
∫ ∞

0
|u(y, s)|dy +

∫ ∞

0
F (x, y)|u(x + y, s)|dy

}

ds. (16)

Let
U(q, t) =

∫ ∞

0
exp(−qx)|u(x, t)|dx,

ψ = max{|c + d|, |c|, |d|}, Ψ(q, t) =
∫ ∞

0
exp(−qx)ψ(x, t)dx.

Let q be on the real axis. Functions U and Ψ decrease in q, q ≥ 0. Boundness
of the values U(0, t), Ψ(0, t) ensures that all partial derivatives in q of U, Ψ
are bounded on q > 0. In addition, the functions U and Ψ are continuous
with all their derivatives in q for any fixed t, 0 ≤ t ≤ T . Since u(x, t) and
ψ(x, t) are continuous, then U ans Ψ are continuous together with all their
partial derivatives with respect to q for q > 0, 0 ≤ t ≤ T .
If we choose q0 > max{λ, µ} and utilize (7), then for 0 < q0 ≤ q ≤ q1 < ∞
the following inequality takes place

∫ ∞

0

∫ ∞

0
F (x, y) exp(−qx)|u(x + y, t)|dy =

=
∫ ∞

0
|u(x, t)|

∫ x

0
F (x− y, y) exp(−qy)dydx ≤ AU(0, t). (17)

By integrating (16) with weight exp(−qx) and taking into account (17), (6),
we obtain

U(q, t) ≤
∫ t

0
{GU(q, s)Ψ(q − λ, s)−GUq(q, s)Ψ(q − λ, s) +

+ GΨ(q − λ, s)U(0, s) + AU(0, s)}ds. (18)
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Our next step is to estimate U(0, s). Let q2 be the solution to the algebraic
equation

U(0, t) = U(q2, t)− q2Uq(q1, t). (19)

Due to the decreasing of the function U(q, t) with q, the equation (19) has
the only root q2 > q1. Hence, for 0 ≤ q ≤ q1, 0 ≤ t ≤ T we obtain

U(0, t) ≤ U(q, t)−QUq(q, t), (20)

where Q = sup0≤t≤T q2(t). By substituting (20) into (18) we come to the
following inequality

U(q, t) ≤
∫ t

0
{V (q, s)U(q, s)−W (q, s)Uq(q, s)} ds, 0 < q0 ≤ q ≤ q1 (21)

where functions V and W are positive, continuous and have negative first
derivative in q. Similarly, by integrating (16) with weight x exp(−qx), we
obtain

−Uq(q, t) ≤ −
∫ t

0

∂
∂q
{V (q, s)U(q, s)−W (q, s)Uq(q, s)} ds, (22)

if 0 < q0 ≤ q ≤ q1. We choose the value of q1 sufficiently large to take ε ≥ Tc1

and to obtain T ′ = T . Applying Lemma to (21),(22) we obtain U(q, t) = 0
in the region R defined in Lemma. Since |u(x, t)| is continuous, u(x, t)=0 for
0 ≤ t ≤ T, 0 ≤ x < ∞. Consequently, c = d. This completes the proof of
Theorem.

Remarks
4. The theorem is true for the discrete form of the problem (1),(2) and for the
case including source and efflux terms which mathematically means adding
h(x, t)− f(x, t)c(x, t) with f(x, t) ≤ const · (1 + x) to the right hand side
of the equation (1).
5. Also, we extend results of Stewart’s uniqueness theorem [15] and obtain
uniqueness for cases of his existence theorem [14] which are not covered by
[15].
6. Our theorem includes as well the important part of the Spouge’s con-
ditions ensuring existence [13]. Namely, his conditions on fragmentation,
sources and efflux satisfy our uniqueness theorem and the remark 4. In addi-
tion, we have the large intersection with Galkin & Dubovski’s [8] conditions
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on the coagulation kernels ensuring existence. These kernels include many
unbounded kernels modelling fast interaction of particles with approximately
equal masses (x ≈ y). The following function K(x, y) from (5) can serve as
an example:

K(x, y) = α(x, y) +
{

exp(ν(2y − x)), y ≤ x
exp(ν(2x− y)), y ≥ x , 0 ≤ ν ≤ λ.

The function α is bounded as before.
7. For the coagulation kernel K = xy without fragmentation Ernst et al [5]
and Galkin [7] found exact behaviour of the first moment of solution. Con-
sequently, this case conforms to the condition (8) of the theorem, and we
have global uniqueness of solution. Uniqueness theorem for such coagulation
model was proved by McLeod [10] for short time interval when the mass
conservation law takes place (before gel creating). For the Flory-Stockmayer
discrete model of polymerization with Ki,j = (Ai + 2)(Aj + 2) Ziff and Stell
[18] found the value of the first moment of solution for all t ≥ 0. Conse-
quently, in this case we obtain global uniqueness of solution, too.
8. Recently Bruno, Friedman and Reitich [2] considered a special coagulation
model. They succeded to prove uniqueness for bounded coagulation kernels
only, though their existence theorem allows to concern unbounded ones. Our
approach supplements their results and enables to prove uniqueness of solu-
tion for kernels from the class (5).
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