
A “triangle” of interconnected
coagulation models1

Abstract

A number of new coagulation models depending on a parameter is de-
rived. The dependence is considered in two different ways. If the parameter
takes its maximal value then at the first case we obtain a new discrete ki-
netic equation. We demonstrate that its continuous version is just the
Oort-Hulst’s coagulation model. At the second case the maximum of the
corresponding parameter yields the Smoluchowski’s coagulation equation.
At the minimal values of both parameters we arrive at another new ki-
netic equation. These three models form a ”triangle” connecting the two
known nowadays coagulation equations “situated” in its vertexes (Smolu-
chowski and Oort-Hulst equations) via alteration of the parameters. Also,
a comparative analysis of these three models is presented. As an advantage
of the Oort-Hulst approach we compute the coagulation front and estab-
lish a connection between infringement of the mass conservation law and
convergence of the coagulation front to infinity.

Preliminaries

We are concerned with disperse systems containing particles of different masses
(volumes) that can undergo mutual interactions resulting in changing of their
masses. Such systems take place in astronomy (forming of cosmic objects), atmo-
spheric science (evolution of clouds), chemistry (polymer reactors and colloids),
etc. If the average mass of particles (i.e. the relation of total mass of all particles
divided by amount of all particles) increases in time then this process is called co-
agulation. Usually it is assumed that a coagulation process may be considered as
merging two colliding particles. This assumption leads to the well known Smolu-
chowski’s coagulation equation [1], which is often written either in the continuous
or in discrete forms. However, there is another continuous coagulation model by
Oort and van de Hulst [2] written in a convenient form by Safronov [3]. The
second model is used in astronomy to analyze cosmic objects (creation of stars,
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planets, evolution of nebulae, galaxies, clouds of cosmic dust, etc.) [2, 3, 4, 5], in
atmosphere science [6, 7, 8, 9, 10], and in technical installations [7, 11].

We derive two one-parameter families of discrete coagulation models. The
more values of the parameters, the more intensive coagulation process we have.
We prove, that the maximum value of the parameter of the first family yields a
discrete balance equation. It turns out, that this equation is the discrete version
of the Oort-Hulst coagulation equation (section 3), written earlier only in the
continuous form. The minimum value of the parameter gives us a new discrete
kinetic equation with low intensity of coagulation. It plays an auxiliary role in
our analysis.

Then we consider another one-parameter family of kinetic equations (section
2). We demonstrate, that the maximum value of the second parameter yields
the discrete version of the renowned Smoluchowski’s coagulation equation. The
minimum of the second parameter leads us to the same auxiliary discrete kinetic
equation.

So, we obtain three discrete coagulation models, which can be presented as a
triangle. One side of the triangle connects the discrete version of the Oort-Hulst’s
equation and the auxiliary kinetic equation, provided that values of the first
parameter change. Another side connects the discrete Smoluchowski’s equation
and the same auxiliary kinetic model if values of the second parameter change.
So, through the auxiliary kinetic model we establish the interconnection between
basic Smoluchowski and Oort-Hulst coagulation equations.

After that we compare a number of mathematical properties of both basic
coagulation equations. We conclude that these equations yield usually almost
the same results and, thus, they both can be applied to the analisys of disperse
systems yielding more wide treatment of coagulation processes. Some of math-
ematical properties of these equations differ, and, hence, they can be treated as
useful complements of each other. As an example of such a useful completion
we compute the speed of coagulation front. Such computations become possible
only after taking the Oort-Hulst equation into account.

As a more advanced example, we observe that the famous phenomenon of
breaking down the mass conservation law at the intensive coagulation rate hap-
pens at the same time moment when the coagulation front goes to infinity. This
observation allows to reveal some new classes of coagulation kernels yielding the
breaking down the mass conservation law.
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1 A family of discrete coagulation models

We consider a disperse system possessing the following properties:
1) the system is sufficiently rarefied to assume that colliding particles do not

undergo an influence of other particles;
2) average collision time (microscopic time) is essentially less than the time

of changing the distribution function;
3) there exist some random forces, which blend the disperse system such

that the motion of particles between collision acts (including the process of their
approach) is statistically independent.

4) masses (volumes) of all particles are proportional to some m0 > 0.
Let us consider the following mechanism of growth of particles as a result of

collisions of pairs of particles of masses (volumes) im0 and jm0, hereinafter we
assume for definiteness i ≥ j. We call the particles of mass im0 as i-mers. m0 is
mass of smallest particles in the system.

Let a collision of an i-mer and a j-mer yield fragmentation of j-mer onto
α monomers (α = α(j)) and a j − α-mer. Each of those α monomers joins
instantly to an i-mer (different for each monomer). It is worth pointing out
that the consideration of such a joining the resultant monomers to i-mers is a
mathematical convenience rather than a physical reality.

Thus, as a result of one collision act we have α new i+1-mers and one j−α-mer
(Figure 1). The parameter α(j) is supposed to be non-decreasing with respect to
the variable j.

From the balance reasonings we come to the following kinetic model:

dci(t)
dt

= ci−1(t)
i−1
∑

j=1
Ki−1,jα(j)cj(t)− ci(t)

i
∑

j=1
Ki,jα(j)cj(t)

−
∞
∑

j=i
Ki,jci(t)cj(t) +

∑

m(i)

∞
∑

j=m(i)

Km(i),jcm(i)(t)cj(t), i ≥ 1, (1)

where ci(t) is concentration of i-mers at the time moment t, Ki,j for i 6= j is equal
to the intensity rate of collisions of i-mers and j-mers, this rate is supposed to be
prescribed by the process consedered. From the physical point of view it is clear
that this function must be symmetric for all arguments i, j ≥ 1: Ki,j = Kj,i. The
values Ki,i are equal to the half of the collisions’ rate for the particles of mass i.
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This phenomenon is caused by double reducing of pairs of particles, which can
interact.

The first summand in the right-hand side of (1) yields the income of i-mers
into the disperse system due to collisions of i− 1-mers and monomers formed by
fragmented j-mers. If i = 1 then we set it equal to zero. The second summand
describes decay of i-mers as a result of merging monomers to them. The multi-
player α in the first and the second summands demonstrates that α monomers
take part in the collision act. The third and forth terms describe decay and
income of i-mers due to fragmentation of i-mers (third) and fragmentation of
m-mers (forth). In the last double summand a larger j-mer ”bites off” m-mer
α(m) monomers, and the i-mer rest of m-mer appears in the system. It is clear
that the positive integer value m satisfies the correlation

i + α(m) = m. (2)

Here each term should be positive and integer. For example, if we have α(j) =
j − 1, then at i = 1 equation (2) has infinitely many solutions m ≥ 2, and the
forth summand becomes equal to

∞
∑

m=2

∞
∑

j=m
Km,jcmcj.

If the equation (2) has no solutions then the forth summand should be omitted
(e.g., at α(m) = m). However, often equation (2) has a unique root m, and the
forth summand in (1) transforms just to

∞
∑

j=m
Km,jcmcj.

If we supply equation (1) by non-negative initial data ci(0) then it is possible
to observe that solutions of (1) are non-negative, too. To demonstrate that, we
use the following integral form of (1):

ci(t)=exp
{

−
∫ t

0

(
i

∑

j=1
Ki,jα(j)cj(s)−

∞
∑

j=i
Ki,jcj(s)

)

ds
}

×
(

ci(0) +
∫ t

0
exp

{

∫ s

0

[
i

∑

j=1
Ki,jα(j)cj(s1)−

∞
∑

j=i
Ki,jcj(s1)

]

ds1

}

×
[

ci−1(s)
i−1
∑

j=1
Ki−1,jα(j)cj(s) +

∑

m(i)

∞
∑

j=m(i)

Km(i),jcm(i)(s)cj(s)
]

ds
)

. (3)
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If initial data ci(0) are stricktly positive, then for truncated coagulation kernels
Km,j = 0, m, j ≥ N0, we easily obtain positivity of ci(t) for all i ≥ 1, t > 0
by assuming that there is a time t0 and a number i0 such that ci0(t0) = 0 and
arriving from (3) to a contradiction. If initial data are not stricktly positive, then
we approximate them by positive initial data and obtain non-negativity of solution
by passing to limit. Non-negativity of solution for non-truncated kernel is more
complicated, it can be proved along with existence theorem by approximating
Km,j by a sequence of truncated kernels, generating the corresponding sequence
of non-negative solutions of (3), and passing to a limit which is a solution of (3).
Non-negativity of the limit obtained is obvious.

If α = 1 then we obtain from (1) the following kinetic equation:

dci

dt
= ci−1

i−1
∑

j=1
Ki−1,jcj−ci

i
∑

j=1
Ki,jcj−

∞
∑

j=i
Ki,jcicj+ci+1

∞
∑

j=i+1
Ki+1,jcj, i ≥ 1. (4)

At α(j) = j (i.e. if the smaller particle is completely destroyed onto monomers,
which ”stuck” instantly to larger particles) then we derive from (1)

dci

dt
= ci−1

i−1
∑

j=1
Ki−1,jjcj − ci

i
∑

j=1
Ki,jjcj −

∞
∑

j=i
Ki,jcicj. (5)

In this case the forth summand of (1) is absent since smaller particles are com-
pletely destroyed without a rest (the forth summand describes contribution of
such ”rests”). Mathematically this means that the above mentioned equation
i + α(m) = m has no roots m.

Let us verify if equations (4), (5) possess the mass conservation law

M1
def=

∞
∑

i=1
ici(t)

?= const. (6)

With this aim we multiply (5) by i and summarize it over 1 ≤ i ≤ ∞. Then we
obtain

dM1

dt
=

∞
∑

i=1

i−1
∑

j=1
ijKi−1,jci−1cj −

∞
∑

i=1

i
∑

j=1
ijKi,jcicj −

∞
∑

i=1

∞
∑

j=i
iKi,jcicj.

In the third summand we replace the order of summation and get the summa-
tion over

∑∞
j=1

∑j
i=1 . Then in the second and the third terms we ”bite off” the
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summand at j = i and make the replacement i = i′ + j′, j = j′. Then,

dM1

dt
=

∞
∑

i=1

∞
∑

j=1
(i + j)jKi+j−1,jci+j−1cj −

∞
∑

i=1

∞
∑

j=1
(i + j)jKi+j,jci+jcj

−
∞
∑

i=1
i(i + 1)Ki,ic2

i −
∞
∑

i=1

∞
∑

j=1
jKi+j,jci+jcj.

After a number of replacements like i = i + 1 we obtain zero and, thus, come to
the mass conservation law. Similar reasonings demonstrate the mass conservation
for equation (4).

So, the alteration of the parameter α(j) from 1 to j connects the coagulation
models (4) and (5).

2 Another family of discrete coagulation models

In this section we establish a connection between model (4) and the renowned
Smoluchowski’s coagulation equation. Let us consider another mechanism of an
elementary collision act between particles i and j, i ≥ j. Namely, we suppose
that the larger particle i ”bites off” j-mer an β-mer (β = β(j) ≤ j) and, thus,
the size of the larger particle becomes equal to i + β. The size of j-mer becomes
equal to j − β (Figure 2). It is naturally to assume that β(j) has non-decreasing
dependence on the variable j. The balance reasonings yield the following kinetic
equation

dci(t)
dt

=
n

∑

j=1
Ki−β,jci−β(t)cj(t)− ci(t)

i
∑

j=1
Ki,jcj(t)

−ci(t)
∞
∑

j=i
Ki,jcj(t) +

∑

m(i)

∞
∑

j=m(i)

Km(i),jcm(i)(t)cj(t), β = β(j), (7)

where the first summand is responsible for income of i-mer particles due to ”glu-
ing” i − β-mers and β-mers that were chipped off j-mers (β ≤ j). The upper
boundary n of summation is determined by the following inequalities

i− β(n) ≥ n, i− β(n + 1) < n + 1. (8)
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This system of inequalities has a unique solution n since we assume a non-
decreasing dependence β(j) on j.

The negative terms of (7) describe the decay of i-mers due to collisions with
j-mers. It can be derived from two negative summands in (1) putting in the first
of them α = 1, because, unlike (1), an elementary collision act deals now with
one i-mer only.

The last summand in (7) is defined like the corresponding summand in (1).
It yields income of i-mer rests after collisions of m-mers and j-mers, j ≥ m. The
values m are determined by the equation i + α(m) = m, where all terms should
be positive.

Substituting β = 1 in (7) yields again the kinetic equation (4). If β(j) = j (i.e.
i-mer and j-mer just merge resulting into i+j-mer), then inequalities (8) yield n =
[i/2] with [i/2] equal to integer part of [i/2]. In view of the symmetry Ki,j = Kj,i

we observe that equation (7) transforms to the classical Smoluchowski’s equation
[1]

dci

dt
=

1
2

i−1
∑

j=1
Ki−j,jci−jcj − ci

∞
∑

j=1
Ki,jcj. (9)

Unlike the previous equations, where the values Ki,i are twice less than real in-
tensities of mutual collisions of i-mers, in (9) the coefficient 1/2 is directly written
before the first summand and is taken into account in the second summand unit-
ing both negative terms of (7) (there the term at j = i is taken into account
twice). So, the values Ki,i in (9) are equal to real intensities without dividing
them by two. If we rewrite the first summand (7) as

n
∑

j=1
Ki−j,jci−jcj, n =

{

(i− 1)/2 for odd i
i/2 for even i, (10)

then its similarity to the corresponding summand of (9) is more clear. The
solution of the system (8) for this case is written in (10).

The celebrated continuous version of (9) is presented below:

∂c(x, t)
∂t

=
1
2

∫ x

0
K(x−y, y)c(x−y, t)c(y, t)dy−c(x, t)

∫ ∞

0
K(x, y)c(y, t)dy. (11)

Its derivation from (9) is well known [12].
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3 Passage to the Oort-Hulst equation

A remarkable observation is that the passage to limit m0 → 0 in (5) yields
the well known continuous coagulation model

∂c(x, t)
∂t

= − ∂
∂x

[

c(x, t)
∫ x

0
yK(x, y)c(y, t)dy

]

−
∫ ∞

x
K(x, y)c(x, t)c(y, t)dy. (12)

In fact, to pass to a continuous form of (5), we introduce the disrtibution finction
c(x, t) describing distribution of particles in mass x at time t, i.e., c(x, t)dx is equal
to the number of particles with masses from (x, x+ dx) at time t. Since the mass
of i-mers is equal to im0, then ci(t) = c(im0, t)m0. Since Ki,j = K(im0, jm0),
then

Ki,jci(t)cj(t) = K(im0, jm0)c(im0, t)c(jm0, t)m2
0. (13)

Consequently, using the replacement x = im0, we obtain

∂c(x, t)
∂t

= − 1
m0

[

c(x, t)
x/m0
∑

j=1
K(x, jm0)c(jm0, t)jm0

− c(x−m0, t)
x/m0−1

∑

j=1
K(x−m0, jm0)c(jm0, t)jm0

]

m0

− c(x, t)
∞
∑

j=i
K(x, jm0)c(jm0, t)m0.

Observing, that these sums are just the integral Darboux sums, we pass to limit
m0 → 0, and obtain (12). Equation (12) was derived by a completely different
methods by Oort and van de Hulst [2] and was rewritten in the form (12) by
Safronov [3]. So, it turns out that equation (12) is the continuous version of the
new discrete equation (5). It is interesting to mention that there were no discrete
versions of (12) earlier. Usually, continuous limit equations are derived from
their discrete analogues. As an example we can present the basic Smoluchowski
coagulation equation, which was firstly derived in its discrete form in 1916 [1],
and only in 1928 its continuous version was written by Müller [12]. Another,
more recent example, can be found in [13], where the authors firstly derive a
discrete monomer-monomer model for heterogeneous catalysis, and then pass to
limit equation in a continuous form. Other interesting related models can be
found in [14, 15].
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Some reasonings, slightly related to our derivation of equation (5), can be
found in [11], p. 131, where the authors noted some connection between (12)
and the following process: l particles of mass x during time ∆t collide with
small particles of mass µ/l, µ < x. This connection is derived on the basis of
series expansion of some functions and truncation of the series without proper
justification (also, cf. [6], p. 45 and [7], pp. 154–155).

The Oort-Hulst equation (12) can be treated as a model of continuous growth
[3, 7]. In fact, if we assume that all particles grow up as a result of joining
more less particles, then the first integral of the right-hand side of (12) is equal
to dx/dt, and the whole first summand is just changing c(x, t) due to joining
the particles with masses y, y < x. Hence, without the last term the equation
(12) is a one-dimentional continuity equation with the ”density” c(x, t) and the
”velocity” dx/dt. The second term in (12) is the decay of particles of mass x as
a result of their ”sedimentation” on larger particles. So, a particle preserves its
”individuality” at collisions with smaller particles, and loses it at collisions with
larger particles. By other words, the collisions of particles of mass x with smaller
particles change mass of particles x, the collisions with larger particles change
the number of particles x. This procedure gives the average and smoothed rate
of growth of all particles of a certain radius.

In worth mentioning that in works [4, 5] coagulation model (12) was applied
to analysis of evolution of different cosmic objects. A similar approach for coag-
ulation growth, involving a small number of uniquely sized large droplets falling
through a homogeneous, randomly distributed collection of smaller droplets, was
used for computing the coagulation processes in atmosphere clouds by Telford
[8], who solved Oort-Hulst equation (12) without the second term in the right-
hand side. In later papers [9, 10] it was shown numerically and analytically,
respectively, that the method of [8] (and, consequently, equation (12)) yields the
results, similar to common kinetic Smoluchowski’s approach. Also, it is pointed
out in [7, 11] that (12) is also useful for investigation of processes in technical
installations (nozzles and engines).

Hence, we can say that there exists a “coagulation triangle” whose vertexes
are constituted by models (4), (5), and (9), and two sides are formed by the
“intermediate” models (1), (7) at 1 ≤ α(j) ≤ j and 1 ≤ β(j) ≤ j, respectively.

In the next section we discuss some common features and distinctions between
the coagulations models (4), (5) and (9).
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4 Comparative mathematical analysis of the co-
agulation models

1. Mass conservation. There is a lot of works devoted to physical and
mathematical analysis of the Smoluchowski’s equations (9), (11) (see, e.g., [16]).
The mass conservation law for this equation is well known. It holds if the sums
over infinite interval ∞

∑

j=1
jKi,jcj

are bounded. These sums appear at the formal summation of the equation
with the weight i. In this case for the first moment of solution M1(t) we have
M1 =const. As we have already seen, the direct summation of (4) and (5) with
weight i also yields the mass conservation provided that the corresponding infinite
sums are bounded.

2. Dissipation law. The zero moment M0 =
∑

ci of solutions means the
total number of particles in the unite volume of the disperse system. Due to
coagulation this value should decrease in time. Summation of (4) and (5) leads
us to the necessary inequality

dM0(t)/dt ≤ 0

that additionally justifies these models.
3. Becker-Döring equations. Let us impose the ”admissibility” condition

that for the case of the simplest kinetics when collisions may occur with monomers
only, all coagulation models should yield the same equation. In this case

Ki,j =











ki, j = 1
kj, i = 1
0, otherwise,

and all the models considered ((4), (5), and (9)) give us the Becker-Döring cluster
equations [17, 18]

dci(t)
dt

= ki−1ci−1c1 − kicic1, i ≥ 2,

dc1(t)
dt

= −k1c2
1 −

∞
∑

j=1
kjc1cj.
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So, the “admissibility condition” is fulfilled.
4. Singular equilibriums. Following [19, 20, 21], the continuous versions

(12) and (11) of the basic “vertex” models should have singular equilibrium so-
lutions of the form

L(x, y) def= K(x, y)c(x)c(y) = (x + y)−3.

The direct check confirms that both stationary equations (11) and (12) have such
a solution.

5. Spreading of perturbations. An important difference between Smolu-
chowski’s and Oort-Hulst’s models is that the Smoluchowski equation spreads
perturbation with infinite speed. To demonstrate this fact let K ≡ 1 and let
equation (9) be provided with initial data c0 = (1, 0, 0, 0, . . .). Passing to the
generating function G(z, t) =

∑∞
i=1 zici(t), we obtain

∂G
∂t

=
1
2
G2(z, t)−G(z, t)G(1, t), G0(z) = z,

whence

G(z, t) =
∞
∑

i=1
zi (t/2)i−1

(1 + t/2)i+1 .

Consequently,

ci(t) =
(t/2)i−1

(1 + t/2)i+1 > 0 for all t > 0, i ≥ 1. (14)

Therefore zero initial data become positive instantly for any large i. Hence, the
nonzero initial value at i = 1 spreads with infinite speed. This lack is similar
to the same property for, e.g., the heat equation and mathematically means the
presence of parabolic properties for (9), (11).

Unlike the Smoluchowski equation, the Oort-Hulst equation (12) does not
possess this lack. In fact, we differentiate (12) and rewrite it as

∂c(x, t)
∂t

+ v(x, t)
∂c(x, t)

∂x
= −c(x, t)

(

∫ x

0
y ∂1K(x, y)c(y, t)dy

)

−xK(x, x)c(x, t)2 − c(x, t)
∫ ∞

x
K(x, y)c(y, t)dy, (15)

where
v(x, t) =

∫ x

0
yK(x, y)c(y, t)dy
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and ∂1K(x, y) means differentiating K with respect to the first variable. Let x(s)
be a solution of the characteristic equation dx/dt = v(x, t). Then the substitution

c(x, t)=exp
{

−
t

∫

0

[

K(x(s), x(s))c(x(s), s)x(s)−
x(s)
∫

0

y∂1K(x(s), y)c(y, s)dy

−
∫ ∞

x(s)
K(x(s), y)c(y, s)dy

]

ds
}

· u(x, t) (16)

yields
∂u(x, t)

∂t
+ v(x, t)

∂u(x, t)
∂x

= 0. (17)

From (16) we see, that functions c(x, t) and u(x, t) are equal or not equal to zero
at the same points. The characteristic equation for (15), (17) has the following
form

dx
dt

= v(x, t) (18)

From simple equation (17) we conclude that if c0(x1) = 0, then c(x1, t) becomes
positive not earlier than at the time moment t1 when the first characteristic curve
x(s) with nonzero starting value x0 arrives at the point x1 (Figure 3). So, equation
(12) ensures physically meaningful boundedness of the perturbation propagation
speed, and, thus, allow to compute the coagulation front. Mathematically that
means that (12) possesses some hyperbolic properties.

5 Computing the coagulation front

To demonstrate the reasonings of subsection 4.5, let us estimate the coagula-
tion front in some cases. Let c0(x) = 0 if x ≥ x0. Then the characteristic curve,
beginning at the point x0, splits the plane to two parts such that c(x, t) = 0 if the
point (x, t) is to the right of that characteristics. This characteristic curve we call
the boundary characteristics or just the coagulation front. From characteristic
equation (18) we see that coagulation front satisfies the following equation

dx
dt

=
∫ x

0
yK(x, y)c(y, t)dy =

∫ ∞

0
yK(x, y)c(y, t)dy (19)

at the initial value x(0) = x0.
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So, if K(x, y) = C = const then

x(t) = x0 + C ·M1t, (20)

where M1 is the constant first moment of the solution.
If the coagulation kernel is additive, i.e., K(x, y) = (x + y), then from (19):

dx
dt

= M2(t) + M1x.

Hence,

x(t) = exp(M1t)
{

x0 +
∫ t

0
exp(−M1s)M2(s)ds

}

. (21)

It is rather complicated to find out the second moment M2(t) from the Oort-Hulst
equation (12). In fact, from (12) we observe

dMk(t)
dt

=
∫ ∞

0

∫ x

0
yK(x, y)c(x, t)c(y, t)[kxk−1 − yk−1]dy dx, k ≥ 0. (22)

So, for the additive kernel we have

dM2(t)
dt

=4M2(t)M1 − 3
∫ ∞

0

∫ ∞

x
x2yc(x, t)c(y, t)dy dx

−2
∫ ∞

0

∫ ∞

x
xy2c(x, t)c(y, t)dy dx−

∫ ∞

0

∫ ∞

x
x3c(x, t)c(y, t)dy dx

≥ 4M2(t)M1 − 3
[∫ ∞

0

∫ ∞

x
x2yc(x, t)c(y, t)dy dx

+
∫ ∞

0

∫ ∞

x
xy2c(x, t)c(y, t)dy dx

]

= M1M2(t). (23)

To derive (23) we have utilized the following inequalities:
∫ ∞

0

∫ x

0
xkykc(x)c(y)dy dx =

1
2

(

∫ ∞

0
xkc(x)dx

)2
(24)

∫ ∞

x
ykc(y)dy ≤ 1

x

∫ ∞

x
yk+1c(y)dy. (25)

Finally, we obtain from (23):

M1M2(t) ≤
dM2(t)

dt
≤ 2M1M2(t). (26)
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Then M2(0) exp(M1t) ≤ M2(t) ≤ M2(0) exp(2M1t).
The Smoluchowski’s equation (11) yields

dMk(t)
dt

=
1
2

∫ ∞

0

∫ ∞

0
K(x, y)c(x, t)c(y, t)[(x + y)k − xk − yk]dy dx, k ≥ 0. (27)

From (27) we obtain for the case K(x, y) = (x + y) the result, similar to (26):

dM2(t)
dt

= 2M2(t)M1. (28)

So, for convenience we can use equality (28) instead of inequality (26). Sub-
stituting (28) into (21), we conclude that for additive coagulation kernels the
coagulation front grows faster than for constant kernels [cf. (20)]:

x(t) = exp(M1t){x0 + M2(0)t}. (29)

Similar reasonings give us front estimates for many coagulation kernels. For
example, if for some positive constants a and b

K(x, y) =
{

ax + by, x ≥ y
ay + bx, y ≥ x,

then for boundary characteristics,

dx
dt

= axM1 + bM2(t).

Observing from (11) that

min{a, b}M1M2 ≤
dM2

dt
≤ max{a, b}M1M2,

we obtain for a > b the following estimate for coagulation front:

eaM1t
{

x0 + bM2(0)
1− exp[−(a− b)M1t]

(a− b)M1

}

≤ x(t) ≤ eaM1t{x0 + bM2(0)t}.

The similar correlation holds for the case b > a.
Let us consider now the coagulation front for multiplicative coagulation kernels

K(x, y) = xy. From (19) we see that

x(t) = x0 exp
(

∫ t

0
M2(s)ds

)

.
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For Smoluchowski equation (11) we have unboundedness of the second mo-
ment M2(t) at the critical moment tcr = [M2(0)]−1 :

M2(t) = M2(0)(1−M2(0)t)−1.

Taking into account inequalities (24), (25), we also obtain for K(x, y) = xy
the unboundedness of the second moment:

M2(0)
1−M2(0)t/2

≤ M2(t) ≤
M2(0)

1−M2(0)t
.

For this model [M2(0)]−1 ≤ tcr ≤ 2[M2(0)]−1.
So, we can see that the coagulation front goes to infinity as t → tcr.
Let us pay our attention to another effect of influence of the infinity - breaking

up the mass conservation law at the same critical time tcr. It is well known that
this effect for Smoluchowski’s equation (11) is caused by trend of the second mo-
ment of solutions M2 to infinity (see, e.g., [22, 23, 24, 25, 26, 27, 28]). So, it turns
out, that convergence to infinity of the coagulation front means breaking down
the mass conservation law. This observation allows to establish infringement of
mass conservation law for a number of other coagulation kernels [29].

Conclusions

We derive three basic discrete coagulation models connected via alteration of
the parameters, which describe collisions of patricles. Therefore we can say that
these equations form a triangle of interconnected coagulation models.

It turns out, that one of these three models is a discrete version of well known
Oort-Hulst continuous coagulation equation. Another model is the celebrated
Smoluchowski equation. The third model corresponds to collisions with minimal
intensity because it is derived at the smallest value of parameters α, β connecting
(4) and (5), and (4) and (9), respectively..

If the coagulation kernel K(x, y) grows more slowly than x · y then the mass
conservation law is valid for all described coagulation types. Also, the particle
dissipation law holds. Reducing all discrete equations to the same Becker-Döring
system justifies additionally the validity of three basic coagulation models (4),
(5) and (9), situated in the vertexes of the coagulation ”triangle” introduced in
this paper.
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Comparing continuous Smoluchowski and Oort-Hulst equations yields the
same singular equilibrium solution. This fact is the additional reason to the
opinion that these equations describe similarly the real coagulation processes.

The Oort-Hulst equation (12) allows to estimate the speed of the coagulation
front. We do that for some cases. Such an estimation is impossible using only
the Smoluchowski equation.

We establish a connection between convergence the coagulation front to infin-
ity and breaking down the mass conservation law at intensive coagulation rates.
It turns out, that coagulation front goes to infinity at the same critical time as
mass conservation breaks.

The author is obliged to V.I.Agoshkov, A.E.Arinstein, and V.P.Shutyaev for
stimulating discussions. Also, he would like to thank the referees for very useful
remarks to the paper.
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