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In this paper we are concerned with the coagulation equation with sources

ﬁcg’;’t) :;/;K(m—y, Je(x =y, t)e(y, t)dy—

—c(x,t) /OOO K(x,y)c(y, t)dy + q(x), x> 0,t>0, (1)
c(x,0) =co(x) >0, =>0. (2)

Our aim is to reveal some properties of the equilibrium solution and prove con-
vergence of the time-dependent solution to the stationary one. Stationary coagu-
lation equation with sources was studied in [2] where the equation with effluxes
was treated. Taking effluxes into consideration essentially helps to construct
results. Without eflux term the convergence to equilibrium was not proved
before.

1 Properties of the stationary solutions

The stationary form of the equation (1) is

3 [ K—pete—y)et)dy—cta) [~ K pew)dyrat) =0, w20 (3)
Let ¢(z) be its nonnegative measurable solution for which the integrals in (3) are

bounded for anu z > 0. Obviously, for the coagulation kernel K (z,y)v(z)v(y)
the solution of (3) is ¢(x)/v(x) for any function v(z) > 0.
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Integrating (3) with the weight = yields

T T K (2, y)e(2)é(y) dady = . (4)
I

In fact, otherwise the first and the second summands in (3) which become equal
to (4), yield zero, and we come to the contradiction with the positivity of

/OOO zq(z)dz.

From (4) we conclude that if K(z,y) < M = const then the first moment of
the function ¢(x) is unbounded. From physical point of view this simple result
is very natural: a long-time influx of particles in the disperse system brings up
the infinite total mass. Nevertheless, the total amount of particles expressed by
the zero moment of ¢(x), may be bounded. For the kernels which describe weak
coagulation (e.g. K(z,y) = exp(—z — y) ), the zero moment can be infinite
similarly to the first one. We define the moments of the solution as

N, = /OO z*¢(x)dx.
0

If we restrict ourselves with solutions ¢(x) with bounded zero and unbounded
first moments, then the natural question arises: ”When the a-th moment of
the equilibrium solution becomes unbounded?” The following theorem gives the
answer to this question.

Theorem 1 Let symmetric nonnegative continuous coagulation kernel be bounded
in L®(R%) and nonzero nonnegative function of sources q have bounded first
moment. Let there exist at least one nonnegative measurable solution ¢ of (3).
Then on « > 1/2 the moments N, are equal to infinity.

Remark 1 The hypothesis of solvability of the equation (3) is essential. Actu-
ally, if K(z,y)=0 on z>1 or y>1 and the sources function q is not

equal to zero on x > 2, then the equation (3) is unsolvable.

Proof of Theorem 1. Multiplying (3) by z® and integrating yields
1 foo poo -
5/0 /0 [(z+y)* — 2% =y K(z,y)é(x)e(y)dedy = —Qq (5)
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where

Qo = /OOO z%q(x)dx > 0. (6)
The following inequality holds for all z,y > 0:
(z+y)* — 2% —y™ > (2% — 2)2%/2y*/2, if 0<a<l, a>2 (7
To prove (7) it suffices to note that the minimum of the function

(z +y)* =2 —y"
xa/Zya/Z

is achieved at x =y.
We substitute (7) into (5) and obtain

2Q, < (2-2")MN2,, 0<a<l (8)

Here
M= sup K(z,y),

0<z,y<oo

If to assume Ny, < oo then at o =1 we obtain from (8) the contradiction
21 < 0. This proves the Theorem 1.

Further, we consider the constant case K(z,y) = 1. The case K = const
can be transformed onto K = 1 by change of variables 7 = Kt. We put for
convenience ) = )y where o is defined in (6). It is easily to observe that

= /2Q). We substitute this correlation into (3):

Jexalr) — y/2Qe(x) + gla) = 0. (9)
In (9) ¢*¢ means the convolution:
exe(w) = [ ele —y)ely)dy.

We avail ourselves of the Laplace transform and obtain from (9)

(20 — 3)1gl(x)
- ey B R, (10)

=1

where
(20 -31=1-3-5-...-(20—3), (—D!=1,



g =qgxgx...xq (the convolution is used ¢ — 1 times).

By definition ¢l% =1, ¢/) = ¢. The expression (10) testifies the nonnegativity
and uniqueness of the solution to (9) and allows explicitely find ¢&(z) for simple
source functions. Let us point out that for ¢(z) = exp(—ax) we obtain

BB (o) () ()
(11)

where Iy, I; are modified Bessel functions. Also, the equality (10) allows to
conclude that N, < oo for all 0 < a < 1/2 provided that

q(z) < Myexp(—ax), My = const. (12)
Really, in this case @ < My/a and from (10) we conclude

(0) <yt Y- B e (13
By integrating (13) with weight z% 0 <« <1 we obtain
VMpa 02 2 T (i = 1/2)T(i + a)
V2m “~  T(i+1)0(i)
where I'(i) is Euler’s gamma-function. We have utilized that
(i +1/2) =27"/x(2i — 1)IL.

Applying the Raabe’s test of summation of series ([1], p.273), we find N, < oo
provided that « < 1/2. Consequently, in this case the estimate « = 1/2 of
Theorem 1 is exact, and we come to the following lemma.

Lemma 1 Let the conditions of Theorem 1 and (12) hold. Then N, < oo
provided that o < 1/2.

N, =

If we consider the discrete stationary coagulation equation

11 1 o0
ch G — EiZEj+Qi:0, 1>1
j=1

with sources ¢ = (@, O, 0,...,0,...), then

=23
C;, = QQTZ" 1 2 1.

In this case we also have N, < oo on «a < 1/2.
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2 Convergence to equilibrium

Theorem 2 Let conditions of Theorem 1 hold, the coagulation kernel K be
a constant and the sources function q be continuous. Then the solution of
the problem (1), (2) converges to equilibrium as t — oo in Cla,b] for all
0<a<b<oo. If, in addition, (12) holds then the convergence takes place in

L'[0,00). The rate of convergence is proportional to exp (—\/QQ t) .

Proof. As we have already mentioned, we can transform any constant coag-
ulation kernel to the unit one. Hence, put K = 1. We denote f(z,t) =
c(x,t) — ¢é(x). Then for the function f we obtain from (1)-(3):

L) 2o fot) = 1) [ 1ty 2% ()
o) [ Fwtdy = ft) [ ely)dy, (14
£(2,0) = folw) & cox) — cla). (15)
We denote F(t) = [° f(z,t)dz. Integrating the equation (1) yields
F() = 2/E (10

(1 + F(O )exp(\/_ t) — 1

Hence,
F(t)—0 as t— oc. (17)

Obviously, F(t) =0 provided that F(0) =0. If F(0) > 0 then from (16) we
obtain

0 < F(t) < F(0) exp(—/2q t). (18)
For —/2Q < F(0) <0 we have —/2Q < F(t) <0 and, in addition,
[F ()] < 21F(0)] exp(—/2Q 1) < 2/2Q exp(—/2q 1), (19)
Also, we observe 2F(0)
/|F s < 5o 235 <2 (20)

provided that F(0) <



With the aim to show that f(x,t) — 0 as t — oo we consider the linearised
equation (14):

u(z,t) = —F(t)u(x, t)+exu(z, t)— F(t)é(x) — \/@ u(z,t), u(z,0) = ug(x).

Employing the Laplace transform gives the solution to (21):

ule, ) = exp <_\/@ - /Ot F(S)d8> { ) + uo(x i:: _i ti

_/ s) exp ( 2Q s —|—/ (s1 d31> > (e >(t — S)ids} . (22)

|
i—0 2.

Therefore we use the method of variation of constants to look for solution of
(14), (15) in the form

! ()t
f(x,t) = exp (—\/@ t —/0 F(s)ds) {g(x,t) INECREDD ( i

|
- v

—/ b(s) G ?(t_s)ids}, (23)

|
zO 7.

where
(1) = Fityesp (2@ t+ [ Fls)ds)
From (18), (19) we conclude
b(t) < F(0) exp(F(0)/1/2Q) > 0; (24)
b(t)| < 2AF(0)| it F(0) <0. (25)
Substituting (23) into (14) yields

oo iy 1 t
gitaxY. S = e (—\/QQt—/O F(s)ds>~

=1

oo 1|42 []
{ 2 1 gl ( CH) +2g2]*z
=1
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7!

—2g * <Z 7 )*/0 b(s)Z#ds—

=1 i=0
t oo glit1] (t _ S)i
—2g */0 b(s) 2 *ds—l—
¢ o0 E[H'”(t . S)i (2]
+ </0 b(s) ;} i!d8> : g(z,0) = fo(x). (26)

With the aim of the Laplace transform we conclude from (26) that the function
g satisfies the equation

i ./ _ . ) 2] 2] i
g = 5 exp < 20 t /0 F(s)ds> {g + gt x ;:1 7 +

oo i) i ¢ oo (=[]t ) 2l
+ <C[2} + 5[2] * ¢ .t ) * (/ b(s)ds + Z <C')/ b(S)Sld8> —
i 0 i— 1. 0

—

o litll(t — s)i

—2g * /Otb(s) Z(:] ds}, g(x,0) = fo(x). (27)

We write (27) in the integral form, then estimate ¢ and —g with (20), (24)
and (25) taken into account, and finally establish the inequality

1!

clilgi

1 o0
ok < goww (2= y2) - {la + 17+ 3 5 +
=1 :

oo alilgi\ Bl oo Flilyi\ 12 oo il
C C C
+A% % ((E ) + <l§ ] ) + 2A|g] = > A } (28)

|
i=1 (2 =1 =1

In (28) the constant A is equal to one of the upper estimate of |b(t)| in
dependence on the sign of F(0).

Let us fix m > 0. For any € > 0 we can find constants M and M; such
that

i el ()t

. <Me", 0<z<m, t>0; (29)
1.

i=1

oo i\ P oo Zlilyi\ 2 .
1% Zi! +1> 5 <M, 0<z<m, t>0. (30)

=1 i=1
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Hence, |g| < h on 0 <z <m, t >0, where the function h satisfies the
equation

1
hi(x,t) = 5 exp(2 — (1/2Q —e)t) - (h[z] + WP M+ A2 M,y + 2AM * h) ., (31)

h(z,0) = hg = const > sup |fo(z)]. (32)

0<x<m

Let us note that h(z,t) increasesin x for all ¢ > 0. Actually, since hg = const
then from (31) hy(z,t) > hy(21,t) for x>z, t>0. Hence, h? increases
in x, too, and, consequently,

M s b2 (z,t) < Mmh®(z,t), M xh(x,t) < Mmh(z,t)

for 0 <x <m, t>0. We substitute these expressions into (31) and establish
that h(z,t) < H(z,t) for 0 <z <m, t>0, if

1
Hy(x,t) = 5 exp(2 (V2Q = 2)t)- (HP (2, 1) (1 + Mm) + H(x,£)(1 + 2AMm)),
H(z,0) = Hy = const > max{hg, A>M}.
We solve this equation and obtain

H(z,t) = HyE(t) exp <H0x(E(t) -1) 14+ Mm )

14+2AMm

where 2(1 1 2A0Mm)
e’(l+ m
Et—exp(l—exp— 2Q) —e)t >§
(t) ( (=(y )t)) 230 —2)
e*(1+2AMm)
< = Ej.
) eXp( 2209 )
Finally, from (33) we obtain boundedness of g¢(z,) :
1+ M]IO
lg(x,t)] < HoEpexp (Hom(Eo 1)1 n 2AMm> G, 0<x<m,t>0.(34)

Now we substitute (20), (29), (30) and (34) into (23) and conclude that c(z,t)
tends to ¢(x) as t — oo uniformly with respect to x € [0,m] :

c(z,t) — (z)| < exp(2 —4/2Q 1) (G + GMme + AMeat) < Mye™ (V2@=9)
(35)



0<z<m,t>0.

We should emphasize that the constants G and M depend on m and e.
This proves convergence in the space Cla,b] for any 0 < a < b < 0.

To prove convergence in the space L'[0,00) we note that
/ () — &()|dz = / le(z, 1) — a(x)|dz +/ le(z, ) — &()|dx <
0 0 m

< Mgme’(m*)t—l—/ c(a:,t)d:v—l—/ é(x)du. (36)

m

Let us fix € >0 and pick up m > (N,/e)'/®, 0 < a < 1/2. Then

/oo c(x)dr < e. (37)

m

Really, to obtain (37) we employ Lemma 1 and the inequality for "tails” of
integrals (cf.[3])

/00 P(x)dr < b /OOO o(z)(x)dx, m >0,

m (m)

which is true for ¢(x) > 0 and nondecreasing ¥ (x) > 0. Since F(t) -0 t—
oo (see (17) ) and (35) is valid, then there exists ¢, such that for all ¢ > ¢,

/Oo c(x, t)de = /OOO c(x, t)dr — /Om c(x, t)de = /Oo c(z)dx +4(t) (38)

where 0(t) <e forall ¢t > t;. Inserting (37) and (38) into (36) yields

/ le(z,t) — &(z)|de < Myme™ (V2= 1 3¢, (39)
0

(35) and (39) prove Theorem 2.
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