Convergence to equilibrium for coagulation equation with sources

P.B.Dubovskii

February 7, 2002

In this paper we are concerned with the coagulation equation with sources

$$
\begin{gather*}
\frac{\partial c(x, t)}{\partial t}=\frac{1}{2} \int_{0}^{x} K(x-y, y) c(x-y, t) c(y, t) d y- \\
-c(x, t) \int_{0}^{\infty} K(x, y) c(y, t) d y+q(x), \quad x \geq 0, t>0 \tag{1}\\
c(x, 0)=c_{0}(x) \geq 0, \quad x \geq 0 \tag{2}
\end{gather*}
$$

Our aim is to reveal some properties of the equilibrium solution and prove convergence of the time-dependent solution to the stationary one. Stationary coagulation equation with sources was studied in [2] where the equation with effluxes was treated. Taking effluxes into consideration essentially helps to construct results. Without efflux term the convergence to equilibrium was not proved before.

1 Properties of the stationary solutions

The stationary form of the equation (1) is

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{x} K(x-y, y) \bar{c}(x-y) \bar{c}(y) d y-\bar{c}(x) \int_{0}^{\infty} K(x, y) \bar{c}(y) d y+q(x)=0, \quad x \geq 0 . \tag{3}
\end{equation*}
$$

Let $\bar{c}(x)$ be its nonnegative measurable solution for which the integrals in (3) are bounded for anu $x \geq 0$. Obviously, for the coagulation kernel $K(x, y) v(x) v(y)$ the solution of (3) is $\bar{c}(x) / v(x)$ for any function $v(x) \geq 0$.

Integrating (3) with the weight x yields

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} x K(x, y) \bar{c}(x) \bar{c}(y) d x d y=\infty . \tag{4}
\end{equation*}
$$

In fact, otherwise the first and the second summands in (3) which become equal to (4), yield zero, and we come to the contradiction with the positivity of

$$
\int_{0}^{\infty} x q(x) d x .
$$

From (4) we conclude that if $K(x, y) \leq M=$ const then the first moment of the function $\bar{c}(x)$ is unbounded. From physical point of view this simple result is very natural: a long-time influx of particles in the disperse system brings up the infinite total mass. Nevertheless, the total amount of particles expressed by the zero moment of $\bar{c}(x)$, may be bounded. For the kernels which describe weak coagulation (e.g. $K(x, y)=\exp (-x-y)$), the zero moment can be infinite similarly to the first one. We define the moments of the solution as

$$
N_{\alpha}=\int_{0}^{\infty} x^{\alpha} \bar{c}(x) d x
$$

If we restrict ourselves with solutions $\bar{c}(x)$ with bounded zero and unbounded first moments, then the natural question arises: "When the α-th moment of the equilibrium solution becomes unbounded?" The following theorem gives the answer to this question.

Theorem 1 Let symmetric nonnegative continuous coagulation kernel be bounded in $L^{\infty}\left(R_{+}^{2}\right)$ and nonzero nonnegative function of sources q have bounded first moment. Let there exist at least one nonnegative measurable solution \bar{c} of (3). Then on $\alpha \geq 1 / 2$ the moments N_{α} are equal to infinity.

Remark 1 The hypothesis of solvability of the equation (3) is essential. Actually, if $K(x, y)=0$ on $x>1$ or $y>1$ and the sources function q is not equal to zero on $x>2$, then the equation (3) is unsolvable.

Proof of Theorem 1. Multiplying (3) by x^{α} and integrating yields

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty}\left[(x+y)^{\alpha}-x^{\alpha}-y^{\alpha}\right] K(x, y) \bar{c}(x) \bar{c}(y) d x d y=-Q_{\alpha} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{\alpha}=\int_{0}^{\infty} x^{\alpha} q(x) d x>0 \tag{6}
\end{equation*}
$$

The following inequality holds for all $x, y \geq 0$:

$$
\begin{equation*}
(x+y)^{\alpha}-x^{\alpha}-y^{\alpha} \geq\left(2^{\alpha}-2\right) x^{\alpha / 2} y^{\alpha / 2}, \quad \text { if } \quad 0 \leq \alpha \leq 1, \alpha \geq 2 \tag{7}
\end{equation*}
$$

To prove (7) it suffices to note that the minimum of the function

$$
\frac{(x+y)^{\alpha}-x^{\alpha}-y^{\alpha}}{x^{\alpha / 2} y^{\alpha / 2}}
$$

is achieved at $x=y$.
We substitute (7) into (5) and obtain

$$
\begin{equation*}
2 Q_{\alpha} \leq\left(2-2^{\alpha}\right) M N_{\alpha / 2}^{2}, \quad 0 \leq \alpha \leq 1 \tag{8}
\end{equation*}
$$

Here

$$
M=\sup _{0 \leq x, y<\infty} K(x, y)
$$

If to assume $N_{1 / 2}<\infty$ then at $\alpha=1$ we obtain from (8) the contradiction $Q_{1} \leq 0$. This proves the Theorem 1 .

Further, we consider the constant case $K(x, y) \equiv 1$. The case $K=$ const can be transformed onto $K=1$ by change of variables $\tau=K t$. We put for convenience $Q=Q_{0}$ where Q_{0} is defined in (6). It is easily to observe that $N_{0}=\sqrt{2 Q}$. We substitute this correlation into (3):

$$
\begin{equation*}
\frac{1}{2} \bar{c} * \bar{c}(x)-\sqrt{2 Q} \bar{c}(x)+q(x)=0 \tag{9}
\end{equation*}
$$

In (9) $\bar{c} * \bar{c}$ means the convolution:

$$
\bar{c} * \bar{c}(x)=\int_{0}^{x} \bar{c}(x-y) \bar{c}(y) d y
$$

We avail ourselves of the Laplace transform and obtain from (9)

$$
\begin{equation*}
\bar{c}(x)=\sqrt{2 Q} \sum_{i=1}^{\infty} \frac{(2 i-3)!!q^{[i]}(x)}{(2 Q)^{i} i!}, \tag{10}
\end{equation*}
$$

where

$$
(2 i-3)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 i-3), \quad(-1)!!=1
$$

$$
q^{[i]}=q * q * \ldots * q \quad \text { (the convolution is used } i-1 \text { times). }
$$

By definition $q^{[0]}=1, q^{[1]}=q$. The expression (10) testifies the nonnegativity and uniqueness of the solution to (9) and allows explicitely find $\bar{c}(x)$ for simple source functions. Let us point out that for $q(x)=\exp (-a x)$ we obtain

$$
\begin{equation*}
\bar{c}(x)=\sqrt{2 a} \sum_{i=1}^{\infty} \frac{\left(2^{i}-3\right)!!(a x)^{i-1}}{2^{i}!!(i-1)!} \mathrm{e}^{-a x}=\sqrt{a / 2} \exp \left(-\frac{a x}{2}\right)\left(I_{0}\left(\frac{a x}{2}\right)-I_{1}\left(\frac{a x}{2}\right)\right) \tag{11}
\end{equation*}
$$

where I_{0}, I_{1} are modified Bessel functions. Also, the equality (10) allows to conclude that $N_{\alpha}<\infty$ for all $0 \leq \alpha<1 / 2$ provided that

$$
\begin{equation*}
q(x) \leq M_{0} \exp (-a x), \quad M_{0}=\text { const } . \tag{12}
\end{equation*}
$$

Really, in this case $Q \leq M_{0} / a$ and from (10) we conclude

$$
\begin{equation*}
\bar{c}(x) \leq \sqrt{2 M_{0} a} \sum_{i=1}^{\infty} \frac{\left(2^{i}-3\right)!!(a x)^{i-1}}{2^{i} i!(i-1)!} \mathrm{e}^{-a x} \tag{13}
\end{equation*}
$$

By integrating (13) with weight $x^{\alpha}, 0 \leq \alpha \leq 1$ we obtain

$$
N_{\alpha}=\frac{\sqrt{M_{0}} a^{-(\alpha+1 / 2)}}{\sqrt{2 \pi}} \cdot \sum_{i=1}^{\infty} \frac{\Gamma(i-1 / 2) \Gamma(i+\alpha)}{\Gamma(i+1) \Gamma(i)}
$$

where $\Gamma(i)$ is Euler's gamma-function. We have utilized that

$$
\Gamma(i+1 / 2)=2^{-i} \sqrt{\pi}(2 i-1)!!
$$

Applying the Raabe's test of summation of series ([1], p.273), we find $N_{\alpha}<\infty$ provided that $\alpha<1 / 2$. Consequently, in this case the estimate $\alpha=1 / 2$ of Theorem 1 is exact, and we come to the following lemma.

Lemma 1 Let the conditions of Theorem 1 and (12) hold. Then $N_{\alpha}<\infty$ provided that $\alpha<1 / 2$.

If we consider the discrete stationary coagulation equation

$$
\frac{1}{2} \sum_{j=1}^{i-1} \bar{c}_{i-j} \bar{c}_{j}-\bar{c}_{i} \sum_{j=1}^{\infty} \bar{c}_{j}+q_{i}=0, \quad i \geq 1
$$

with sources $q=(Q, 0,0, \ldots, 0, \ldots)$, then

$$
\bar{c}_{i}=\sqrt{2 Q} \frac{(2 i-3)!!}{2^{i} i!}, \quad i \geq 1
$$

In this case we also have $N_{\alpha}<\infty$ on $\alpha<1 / 2$.

2 Convergence to equilibrium

Theorem 2 Let conditions of Theorem 1 hold, the coagulation kernel K be a constant and the sources function q be continuous. Then the solution of the problem (1), (2) converges to equilibrium as $t \rightarrow \infty$ in $C[a, b]$ for all $0 \leq a<b<\infty$. If, in addition, (12) holds then the convergence takes place in $L^{1}[0, \infty)$. The rate of convergence is proportional to $\exp (-\sqrt{2 Q} t)$.

Proof. As we have already mentioned, we can transform any constant coagulation kernel to the unit one. Hence, put $K=1$. We denote $f(x, t)=$ $c(x, t)-\bar{c}(x)$. Then for the function f we obtain from (1)-(3):

$$
\begin{gather*}
\frac{\partial f(x, t)}{\partial t}=\frac{1}{2} f * f(x, t)-f(x, t) \int_{0}^{\infty} f(y, t) d y+\bar{c} * f(x)- \\
-\bar{c}(x) \int_{0}^{\infty} f(y, t) d y-f(x, t) \int_{0}^{\infty} \bar{c}(y) d y \tag{14}\\
f(x, 0)=f_{0}(x) \stackrel{\text { def }}{=} c_{0}(x)-\bar{c}(x) . \tag{15}
\end{gather*}
$$

We denote $F(t)=\int_{0}^{\infty} f(x, t) d x$. Integrating the equation (1) yields

$$
\begin{equation*}
F(t)=\frac{2 \sqrt{2 Q}}{\left(1+\frac{2 \sqrt{2 Q}}{F(0)}\right) \exp (\sqrt{2 Q} t)-1} \tag{16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
F(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{17}
\end{equation*}
$$

Obviously, $F(t) \equiv 0$ provided that $F(0)=0$. If $F(0)>0$ then from (16) we obtain

$$
\begin{equation*}
0<F(t)<F(0) \exp (-\sqrt{2 q} t) \tag{18}
\end{equation*}
$$

For $-\sqrt{2 Q} \leq F(0)<0$ we have $-\sqrt{2 Q} \leq F(t)<0$ and, in addition,

$$
\begin{equation*}
|F(t)| \leq 2|F(0)| \exp (-\sqrt{2 Q} t) \leq 2 \sqrt{2 Q} \exp (-\sqrt{2 q} t) \tag{19}
\end{equation*}
$$

Also, we observe

$$
\begin{equation*}
\int_{0}^{t}|F(s)| d s \leq \frac{2 F(0)}{F(0)+2 \sqrt{2 Q}} \leq 2 \tag{20}
\end{equation*}
$$

provided that $F(0)<0$.

With the aim to show that $f(x, t) \rightarrow 0$ as $t \rightarrow \infty$ we consider the linearised equation (14):
$u_{t}(x, t)=-F(t) u(x, t)+\bar{c} * u(x, t)-F(t) \bar{c}(x)-\sqrt{2 Q} u(x, t), \quad u(x, 0)=u_{0}(x)$.
Employing the Laplace transform gives the solution to (21):

$$
\begin{gather*}
u(x, t)=\exp \left(-\sqrt{2 Q} t-\int_{0}^{t} F(s) d s\right)\left\{u_{0}(x)+u_{0}(x) * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]}(x) t^{i}}{i!}-\right. \\
\left.\quad-\int_{0}^{t} F(s) \exp \left(\sqrt{2 Q} s+\int_{0}^{s} F\left(s_{1}\right) d s_{1}\right) \sum_{i=0}^{\infty} \frac{\bar{c}^{[i+1]}(x)(t-s)^{i}}{i!} d s\right\} \tag{22}
\end{gather*}
$$

Therefore we use the method of variation of constants to look for solution of (14), (15) in the form

$$
\begin{gather*}
f(x, t)=\exp \left(-\sqrt{2 Q} t-\int_{0}^{t} F(s) d s\right)\left\{g(x, t)+g(x, t) * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]}(x) t^{i}}{i!}-\right. \\
\left.-\int_{0}^{t} b(s) \sum_{i=0}^{\infty} \frac{\bar{c}^{[i+1]}(x)(t-s)^{i}}{i!} d s\right\} \tag{23}
\end{gather*}
$$

where

$$
b(t)=F(t) \exp \left(\sqrt{2 Q} t+\int_{0}^{t} F(s) d s\right)
$$

From (18), (19) we conclude

$$
\begin{gather*}
b(t) \leq F(0) \exp (F(0) / \sqrt{2 Q}) \quad \text { if } \quad F(0)>0 \tag{24}\\
|b(t)| \leq 2|F(0)| \quad \text { if } \quad F(0) \leq 0 \tag{25}
\end{gather*}
$$

Substituting (23) into (14) yields

$$
\begin{gathered}
g_{t}+g_{t} * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}=\frac{1}{2} \exp \left(-\sqrt{2 Q} t-\int_{0}^{t} F(s) d s\right) . \\
\cdot\left\{g^{[2]}+g^{[2]} *\left(\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right)^{[2]}+2 g^{[2]} * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}-\right.
\end{gathered}
$$

$$
\begin{gather*}
-2 g *\left(\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right) * \int_{0}^{t} b(s) \sum_{i=0}^{\infty} \frac{\bar{c}^{[i+1]}(t-s)^{i}}{i!} d s- \\
-2 g * \int_{0}^{t} b(s) \sum_{i=0}^{\infty} \frac{\bar{c}^{[i+1]}(t-s)^{i}}{i!} d s+ \\
\left.+\left(\int_{0}^{t} b(s) \sum_{i=0}^{\infty} \frac{\bar{c}^{[i+1]}(t-s)^{i}}{i!} d s\right)^{[2]}\right\}, \quad g(x, 0)=f_{0}(x) . \tag{26}
\end{gather*}
$$

With the aim of the Laplace transform we conclude from (26) that the function g satisfies the equation

$$
\begin{gather*}
g_{t}=\frac{1}{2} \exp \left(-\sqrt{2 Q} t-\int_{0}^{t} F(s) d s\right) \cdot\left\{g^{[2]}+g^{[2]} * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}+\right. \\
+\left(\bar{c}^{[2]}+\bar{c}^{[2]} * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right) *\left(\int_{0}^{t} b(s) d s+\sum_{i=1}^{\infty} \frac{(-\bar{c})^{[i]}}{i!} \int_{0}^{t} b(s) s^{i} d s\right)^{[2]}- \\
\left.\quad-2 g * \int_{0}^{t} b(s) \sum_{i=0}^{\infty} \frac{\bar{c}^{[i+1]}(t-s)^{i}}{i!} d s\right\}, \quad g(x, 0)=f_{0}(x) \tag{27}
\end{gather*}
$$

We write (27) in the integral form, then estimate g and $-g$ with (20), (24) and (25) taken into account, and finally establish the inequality

$$
\begin{gather*}
|g|_{t} \leq \frac{1}{2} \exp (2-\sqrt{2 Q}) \cdot\left\{|g|^{[2]}+|g|^{[2]} * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}+\right. \\
\left.+A^{2} *\left(\left(\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right)^{[3]}+\left(\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right)^{[2]}\right)+2 A|g| * \sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right\} . \tag{28}
\end{gather*}
$$

In (28) the constant A is equal to one of the upper estimate of $|b(t)|$ in dependence on the sign of $F(0)$.

Let us fix $m>0$. For any $\varepsilon>0$ we can find constants M and M_{1} such that

$$
\begin{gather*}
\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]}(x) t^{i}}{i!} \leq M \mathrm{e}^{\varepsilon t}, \quad 0 \leq x \leq m, \quad t \geq 0 \tag{29}\\
1 *\left(\left(\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right)^{[3]}+\left(\sum_{i=1}^{\infty} \frac{\bar{c}^{[i]} t^{i}}{i!}\right)^{[2]}\right) \leq M_{1} \mathrm{e}^{\varepsilon t}, \quad 0 \leq x \leq m, \quad t \geq 0 \tag{30}
\end{gather*}
$$

Hence, $|g|<h$ on $0 \leq x \leq m, t>0$, where the function h satisfies the equation

$$
\begin{gather*}
h_{t}(x, t)=\frac{1}{2} \exp (2-(\sqrt{2 Q}-\varepsilon) t) \cdot\left(h^{[2]}+h^{[2]} * M+A^{2} M_{1}+2 A M * h\right), \tag{31}\\
h(x, 0)=h_{0}=\text { const }>\sup _{0 \leq x \leq m}\left|f_{0}(x)\right| . \tag{32}
\end{gather*}
$$

Let us note that $h(x, t)$ increases in x for all $t>0$. Actually, since $h_{0}=$ const then from (31) $h_{t}(x, t)>h_{t}\left(x_{1}, t\right)$ for $x>x_{1}, \quad t \geq 0$. Hence, $h^{[2]}$ increases in x, too, and, consequently,

$$
M * h^{[2]}(x, t) \leq M m h^{[2]}(x, t), \quad M * h(x, t) \leq M m h(x, t)
$$

for $0 \leq x \leq m, \quad t \geq 0$. We substitute these expressions into (31) and establish that $h(x, t)<H(x, t)$ for $0 \leq x \leq m, t \geq 0$, if

$$
\begin{gathered}
H_{t}(x, t)=\frac{1}{2} \exp (2-(\sqrt{2 Q}-\varepsilon) t) \cdot\left(H^{[2]}(x, t)(1+M m)+H(x, t)(1+2 A M m)\right), \\
H(x, 0)=H_{0}=\text { const }>\max \left\{h_{0}, A^{2} M\right\} .
\end{gathered}
$$

We solve this equation and obtain

$$
\begin{equation*}
H(x, t)=H_{0} E(t) \exp \left(H_{0} x(E(t)-1) \frac{1+M m}{1+2 A M m}\right) \tag{33}
\end{equation*}
$$

where

$$
\begin{gathered}
E(t)=\exp \left((1-\exp (-(\sqrt{2 Q}-\varepsilon) t)) \frac{\mathrm{e}^{2}(1+2 A M m)}{2(\sqrt{2 Q}-\varepsilon)}\right) \leq \\
\leq \exp \left(\frac{\mathrm{e}^{2}(1+2 A M m)}{2(\sqrt{2 Q}-\varepsilon)}\right)=E_{0} .
\end{gathered}
$$

Finally, from (33) we obtain boundedness of $g(x, t)$:

$$
\begin{equation*}
|g(x, t)| \leq H_{0} E_{0} \exp \left(H_{0} m\left(E_{0}-1\right) \frac{1+M x_{0}}{1+2 A M m}\right)=G, 0 \leq x \leq m, t \geq 0 \tag{34}
\end{equation*}
$$

Now we substitute (20), (29), (30) and (34) into (23) and conclude that $c(x, t)$ tends to $\bar{c}(x)$ as $t \rightarrow \infty$ uniformly with respect to $x \in[0, m]$:

$$
\begin{equation*}
|c(x, t)-\bar{c}(x)| \leq \exp (2-\sqrt{2 Q} t)\left(G+G M m \mathrm{e}^{\varepsilon t}+A M \mathrm{e}^{\varepsilon t}\right) \leq M_{2} \mathrm{e}^{-(\sqrt{2 Q}-\varepsilon) t} \tag{35}
\end{equation*}
$$

$$
0 \leq x \leq m, t \geq 0
$$

We should emphasize that the constants G and M depend on m and ε. This proves convergence in the space $C[a, b]$ for any $0 \leq a<b<\infty$.

To prove convergence in the space $L^{1}[0, \infty)$ we note that

$$
\begin{align*}
\int_{0}^{\infty} \mid c(x, t) & -\bar{c}(x)\left|d x=\int_{0}^{m}\right| c(x, t)-\bar{c}(x)\left|d x+\int_{m}^{\infty}\right| c(x, t)-\bar{c}(x) \mid d x \leq \\
& \leq M_{2} m \mathrm{e}^{-(\sqrt{2 Q}-\varepsilon) t}+\int_{m}^{\infty} c(x, t) d x+\int_{m}^{\infty} \bar{c}(x) d x \tag{36}
\end{align*}
$$

Let us fix $\epsilon>0$ and pick up $m \geq\left(N_{\alpha} / \epsilon\right)^{1 / \alpha}, 0<\alpha<1 / 2$. Then

$$
\begin{equation*}
\int_{m}^{\infty} \bar{c}(x) d x \leq \epsilon . \tag{37}
\end{equation*}
$$

Really, to obtain (37) we employ Lemma 1 and the inequality for "tails" of integrals (cf.[3])

$$
\int_{m}^{\infty} \phi(x) d x \leq \frac{1}{\psi(m)} \int_{0}^{\infty} \phi(x) \psi(x) d x, \quad m>0
$$

which is true for $\phi(x) \geq 0$ and nondecreasing $\psi(x)>0$. Since $F(t) \rightarrow 0 \quad t \rightarrow$ $\infty \quad\left(\right.$ see (17)) and (35) is valid, then there exists t_{0} such that for all $t>t_{0}$

$$
\begin{equation*}
\int_{m}^{\infty} c(x, t) d x=\int_{0}^{\infty} c(x, t) d x-\int_{0}^{m} c(x, t) d x=\int_{m}^{\infty} \bar{c}(x) d x+\delta(t) \tag{38}
\end{equation*}
$$

where $\delta(t) \leq \epsilon$ for all $t>t_{0}$. Inserting (37) and (38) into (36) yields

$$
\begin{equation*}
\int_{0}^{\infty}|c(x, t)-\bar{c}(x)| d x \leq M_{2} m \mathrm{e}^{-(\sqrt{2 Q}-\varepsilon) t}+3 \epsilon . \tag{39}
\end{equation*}
$$

(35) and (39) prove Theorem 2.

References

[1] G. M. Fikhtengolz, Differential and integral calculus. V. 2, Nauka, Moscow, 1966, in Russian.
[2] H. Gajewski, "On a first order partial differential equation with nonlocal nonlinearity," Mathematische Nachrichten 111 (1983), 289-300.
[3] V. A. Galkin and P. B. Dubovskii, "Solutions for the coagulation equation with unbounded kernels," Differential Equations 22 (1986), 504-509.
[4] M. V. Smoluchowski, "Drei Vorträge über Diffusion, Brownishe Bewegung und Koagulation von Kolloidteilchen," Physik. Z. 17 (1916), 557-585.

