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In this paper we are concerned with the coagulation equation with sources

∂c(x, t)
∂t

=
1
2

∫ x

0
K(x− y, y)c(x− y, t)c(y, t)dy−

−c(x, t)
∫ ∞

0
K(x, y)c(y, t)dy + q(x), x ≥ 0, t > 0, (1)

c(x, 0) = c0(x) ≥ 0, x ≥ 0. (2)

Our aim is to reveal some properties of the equilibrium solution and prove con-
vergence of the time-dependent solution to the stationary one. Stationary coagu-
lation equation with sources was studied in [2] where the equation with effluxes
was treated. Taking effluxes into consideration essentially helps to construct
results. Without efflux term the convergence to equilibrium was not proved
before.

1 Properties of the stationary solutions

The stationary form of the equation (1) is

1
2

∫ x

0
K(x−y, y)c̄(x−y)c̄(y)dy−c̄(x)

∫ ∞

0
K(x, y)c̄(y)dy+q(x) = 0, x ≥ 0. (3)

Let c̄(x) be its nonnegative measurable solution for which the integrals in (3) are
bounded for anu x ≥ 0. Obviously, for the coagulation kernel K(x, y)v(x)v(y)
the solution of (3) is c̄(x)/v(x) for any function v(x) ≥ 0.
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Integrating (3) with the weight x yields
∫ ∞

0

∫ ∞

0
xK(x, y)c̄(x)c̄(y)dxdy = ∞. (4)

In fact, otherwise the first and the second summands in (3) which become equal
to (4), yield zero, and we come to the contradiction with the positivity of

∫ ∞

0
xq(x)dx.

From (4) we conclude that if K(x, y) ≤ M = const then the first moment of
the function c̄(x) is unbounded. From physical point of view this simple result
is very natural: a long-time influx of particles in the disperse system brings up
the infinite total mass. Nevertheless, the total amount of particles expressed by
the zero moment of c̄(x), may be bounded. For the kernels which describe weak
coagulation (e.g. K(x, y) = exp(−x − y) ), the zero moment can be infinite
similarly to the first one. We define the moments of the solution as

Nα =
∫ ∞

0
xαc̄(x)dx.

If we restrict ourselves with solutions c̄(x) with bounded zero and unbounded
first moments, then the natural question arises: ”When the α-th moment of
the equilibrium solution becomes unbounded?” The following theorem gives the
answer to this question.

Theorem 1 Let symmetric nonnegative continuous coagulation kernel be bounded
in L∞(R2

+) and nonzero nonnegative function of sources q have bounded first
moment. Let there exist at least one nonnegative measurable solution c̄ of (3).
Then on α ≥ 1/2 the moments Nα are equal to infinity.

Remark 1 The hypothesis of solvability of the equation (3) is essential. Actu-
ally, if K(x, y) = 0 on x > 1 or y > 1 and the sources function q is not
equal to zero on x > 2, then the equation (3) is unsolvable.

Proof of Theorem 1. Multiplying (3) by xα and integrating yields

1
2

∫ ∞

0

∫ ∞

0
[(x + y)α − xα − yα] K(x, y)c̄(x)c̄(y)dxdy = −Qα (5)
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where
Qα =

∫ ∞

0
xαq(x)dx > 0. (6)

The following inequality holds for all x, y ≥ 0 :

(x + y)α − xα − yα ≥ (2α − 2)xα/2yα/2, if 0 ≤ α ≤ 1, α ≥ 2. (7)

To prove (7) it suffices to note that the minimum of the function

(x + y)α − xα − yα

xα/2yα/2

is achieved at x = y.
We substitute (7) into (5) and obtain

2Qα ≤ (2− 2α)MN2
α/2, 0 ≤ α ≤ 1. (8)

Here
M = sup

0≤x,y<∞
K(x, y),

If to assume N1/2 < ∞ then at α = 1 we obtain from (8) the contradiction
Q1 ≤ 0. This proves the Theorem 1.

Further, we consider the constant case K(x, y) ≡ 1. The case K = const
can be transformed onto K = 1 by change of variables τ = Kt. We put for
convenience Q = Q0 where Q0 is defined in (6). It is easily to observe that
N0 =

√
2Q. We substitute this correlation into (3):

1
2
c̄ ∗ c̄(x)−

√

2Qc̄(x) + q(x) = 0. (9)

In (9) c̄ ∗ c̄ means the convolution:

c̄ ∗ c̄(x) =
∫ x

0
c̄(x− y)c̄(y)dy.

We avail ourselves of the Laplace transform and obtain from (9)

c̄(x) =
√

2Q
∞
∑

i=1

(2i− 3)!!q[i](x)
(2Q)ii!

, (10)

where
(2i− 3)!! = 1 · 3 · 5 · . . . · (2i− 3), (−1)!! = 1,
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q[i] = q ∗ q ∗ . . . ∗ q (the convolution is used i− 1 times).

By definition q[0] = 1, q[1] = q. The expression (10) testifies the nonnegativity
and uniqueness of the solution to (9) and allows explicitely find c̄(x) for simple
source functions. Let us point out that for q(x) = exp(−ax) we obtain

c̄(x) =
√

2a
∞
∑

i=1

(2i − 3)!!(ax)i−1

2ii!(i− 1)!
e−ax =

√

a/2 exp
(

−ax
2

) (

I0

(ax
2

)

− I1

(ax
2

))

(11)
where I0, I1 are modified Bessel functions. Also, the equality (10) allows to
conclude that Nα < ∞ for all 0 ≤ α < 1/2 provided that

q(x) ≤ M0 exp(−ax), M0 = const. (12)

Really, in this case Q ≤ M0/a and from (10) we conclude

c̄(x) ≤
√

2M0a
∞
∑

i=1

(2i − 3)!!(ax)i−1

2ii!(i− 1)!
e−ax (13)

By integrating (13) with weight xα, 0 ≤ α ≤ 1 we obtain

Nα =
√

M0a−(α+1/2)
√

2π
·
∞
∑

i=1

Γ(i− 1/2)Γ(i + α)
Γ(i + 1)Γ(i)

where Γ(i) is Euler’s gamma-function. We have utilized that

Γ(i + 1/2) = 2−i√π(2i− 1)!!.

Applying the Raabe’s test of summation of series ([1], p.273), we find Nα < ∞
provided that α < 1/2. Consequently, in this case the estimate α = 1/2 of
Theorem 1 is exact, and we come to the following lemma.

Lemma 1 Let the conditions of Theorem 1 and (12) hold. Then Nα < ∞
provided that α < 1/2.

If we consider the discrete stationary coagulation equation

1
2

i−1
∑

j=1
c̄i−j c̄j − c̄i

∞
∑

j=1
c̄j + qi = 0, i ≥ 1

with sources q = (Q, 0, 0, . . . , 0, . . .), then

c̄i =
√

2Q
(2i− 3)!!

2ii!
, i ≥ 1.

In this case we also have Nα < ∞ on α < 1/2.
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2 Convergence to equilibrium

Theorem 2 Let conditions of Theorem 1 hold, the coagulation kernel K be
a constant and the sources function q be continuous. Then the solution of
the problem (1), (2) converges to equilibrium as t → ∞ in C[a, b] for all
0 ≤ a < b < ∞. If, in addition, (12) holds then the convergence takes place in
L1[0,∞). The rate of convergence is proportional to exp

(

−
√

2Q t
)

.

Proof. As we have already mentioned, we can transform any constant coag-
ulation kernel to the unit one. Hence, put K = 1. We denote f(x, t) =
c(x, t)− c̄(x). Then for the function f we obtain from (1)–(3):

∂f(x, t)
∂t

=
1
2
f ∗ f(x, t)− f(x, t)

∫ ∞

0
f(y, t)dy + c̄ ∗ f(x)−

−c̄(x)
∫ ∞

0
f(y, t)dy − f(x, t)

∫ ∞

0
c̄(y)dy, (14)

f(x, 0) = f0(x) def= c0(x)− c̄(x). (15)

We denote F (t) =
∫∞
0 f(x, t)dx. Integrating the equation (1) yields

F (t) =
2
√

2Q
(

1 + 2
√

2Q
F (0)

)

exp(
√

2Q t)− 1
. (16)

Hence,
F (t) → 0 as t →∞. (17)

Obviously, F (t) ≡ 0 provided that F (0) = 0. If F (0) > 0 then from (16) we
obtain

0 < F (t) < F (0) exp(−
√

2q t). (18)

For −
√

2Q ≤ F (0) < 0 we have −
√

2Q ≤ F (t) < 0 and, in addition,

|F (t)| ≤ 2|F (0)| exp(−
√

2Q t) ≤ 2
√

2Q exp(−
√

2q t). (19)

Also, we observe
∫ t

0
|F (s)|ds ≤ 2F (0)

F (0) + 2
√

2Q
≤ 2 (20)

provided that F (0) < 0.
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With the aim to show that f(x, t) → 0 as t →∞ we consider the linearised
equation (14):

ut(x, t) = −F (t)u(x, t)+ c̄∗u(x, t)−F (t)c̄(x)−
√

2Q u(x, t), u(x, 0) = u0(x).
(21)

Employing the Laplace transform gives the solution to (21):

u(x, t) = exp
(

−
√

2Q t−
∫ t

0
F (s)ds

)

{

u0(x) + u0(x) ∗
∞
∑

i=1

c̄[i](x)ti

i!
−

−
∫ t

0
F (s) exp

(
√

2Q s +
∫ s

0
F (s1)ds1

) ∞
∑

i=0

c̄[i+1](x)(t− s)i

i!
ds

}

. (22)

Therefore we use the method of variation of constants to look for solution of
(14), (15) in the form

f(x, t) = exp
(

−
√

2Q t−
∫ t

0
F (s)ds

)

{

g(x, t) + g(x, t) ∗
∞
∑

i=1

c̄[i](x)ti

i!
−

−
∫ t

0
b(s)

∞
∑

i=0

c̄[i+1](x)(t− s)i

i!
ds

}

, (23)

where
b(t) = F (t) exp

(
√

2Q t +
∫ t

0
F (s)ds

)

.

From (18), (19) we conclude

b(t) ≤ F (0) exp(F (0)/
√

2Q) if F (0) > 0; (24)

|b(t)| ≤ 2|F (0)| if F (0) ≤ 0. (25)

Substituting (23) into (14) yields

gt + gt ∗
∞
∑

i=1

c̄[i]ti

i!
=

1
2

exp
(

−
√

2Q t−
∫ t

0
F (s)ds

)

·

·







g[2] + g[2] ∗
( ∞

∑

i=1

c̄[i]ti

i!

)[2]

+ 2g[2] ∗
∞
∑

i=1

c̄[i]ti

i!
−

6



−2g ∗
( ∞

∑

i=1

c̄[i]ti

i!

)

∗
∫ t

0
b(s)

∞
∑

i=0

c̄[i+1](t− s)i

i!
ds−

−2g ∗
∫ t

0
b(s)

∞
∑

i=0

c̄[i+1](t− s)i

i!
ds+

+
(

∫ t

0
b(s)

∞
∑

i=0

c̄[i+1](t− s)i

i!
ds

)[2]






, g(x, 0) = f0(x). (26)

With the aim of the Laplace transform we conclude from (26) that the function
g satisfies the equation

gt =
1
2

exp
(

−
√

2Q t−
∫ t

0
F (s)ds

)

·
{

g[2] + g[2] ∗
∞
∑

i=1

c̄[i]ti

i!
+

+
(

c̄[2] + c̄[2] ∗
∞
∑

i=1

c̄[i]ti

i!

)

∗
(

∫ t

0
b(s)ds +

∞
∑

i=1

(−c̄)[i]

i!

∫ t

0
b(s)sids

)[2]

−

−2g ∗
∫ t

0
b(s)

∞
∑

i=0

c̄[i+1](t− s)i

i!
ds

}

, g(x, 0) = f0(x). (27)

We write (27) in the integral form, then estimate g and −g with (20), (24)
and (25) taken into account, and finally establish the inequality

|g|t ≤
1
2

exp
(

2−
√

2Q
)

·
{

|g|[2] + |g|[2] ∗
∞
∑

i=1

c̄[i]ti

i!
+

+A2 ∗





( ∞
∑

i=1

c̄[i]ti

i!

)[3]

+
( ∞

∑

i=1

c̄[i]ti

i!

)[2]


 + 2A|g| ∗
∞
∑

i=1

c̄[i]ti

i!

}

. (28)

In (28) the constant A is equal to one of the upper estimate of |b(t)| in
dependence on the sign of F (0).

Let us fix m > 0. For any ε > 0 we can find constants M and M1 such
that

∞
∑

i=1

c̄[i](x)ti

i!
≤ Meεt, 0 ≤ x ≤ m, t ≥ 0; (29)

1 ∗





( ∞
∑

i=1

c̄[i]ti

i!

)[3]

+
( ∞

∑

i=1

c̄[i]ti

i!

)[2]


 ≤ M1eεt, 0 ≤ x ≤ m, t ≥ 0. (30)

7



Hence, |g| < h on 0 ≤ x ≤ m, t > 0, where the function h satisfies the
equation

ht(x, t) =
1
2

exp(2− (
√

2Q− ε)t) ·
(

h[2] + h[2] ∗M + A2M1 + 2AM ∗ h
)

, (31)

h(x, 0) = h0 = const > sup
0≤x≤m

|f0(x)|. (32)

Let us note that h(x, t) increases in x for all t > 0. Actually, since h0 = const
then from (31) ht(x, t) > ht(x1, t) for x > x1, t ≥ 0. Hence, h[2] increases
in x, too, and, consequently,

M ∗ h[2](x, t) ≤ Mmh[2](x, t), M ∗ h(x, t) ≤ Mmh(x, t)

for 0 ≤ x ≤ m, t ≥ 0. We substitute these expressions into (31) and establish
that h(x, t) < H(x, t) for 0 ≤ x ≤ m, t ≥ 0, if

Ht(x, t) =
1
2

exp(2− (
√

2Q− ε)t) ·
(

H [2](x, t)(1 + Mm) + H(x, t)(1 + 2AMm)
)

,

H(x, 0) = H0 = const > max{h0, A2M}.
We solve this equation and obtain

H(x, t) = H0E(t) exp
(

H0x(E(t)− 1)
1 + Mm

1 + 2AMm

)

(33)

where

E(t) = exp
(

(1− exp(−(
√

2Q− ε)t))
e2(1 + 2AMm)

2(
√

2Q− ε)

)

≤

≤ exp
(

e2(1 + 2AMm)
2(
√

2Q− ε)

)

= E0.

Finally, from (33) we obtain boundedness of g(x, t) :

|g(x, t)| ≤ H0E0 exp
(

H0m(E0 − 1)
1 + Mx0

1 + 2AMm

)

= G, 0 ≤ x ≤ m, t ≥ 0. (34)

Now we substitute (20), (29), (30) and (34) into (23) and conclude that c(x, t)
tends to c̄(x) as t →∞ uniformly with respect to x ∈ [0, m] :

|c(x, t)− c̄(x)| ≤ exp(2−
√

2Q t)
(

G + GMmeεt + AMeεt
)

≤ M2e−(
√

2Q−ε)t,
(35)
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0 ≤ x ≤ m, t ≥ 0.

We should emphasize that the constants G and M depend on m and ε.
This proves convergence in the space C[a, b] for any 0 ≤ a < b < ∞.

To prove convergence in the space L1[0,∞) we note that
∫ ∞

0
|c(x, t)− c̄(x)|dx =

∫ m

0
|c(x, t)− c̄(x)|dx +

∫ ∞

m
|c(x, t)− c̄(x)|dx ≤

≤ M2me−(
√

2Q−ε)t +
∫ ∞

m
c(x, t)dx +

∫ ∞

m
c̄(x)dx. (36)

Let us fix ε > 0 and pick up m ≥ (Nα/ε)1/α, 0 < α < 1/2. Then
∫ ∞

m
c̄(x)dx ≤ ε. (37)

Really, to obtain (37) we employ Lemma 1 and the inequality for ”tails” of
integrals (cf.[3])

∫ ∞

m
φ(x)dx ≤ 1

ψ(m)

∫ ∞

0
φ(x)ψ(x)dx, m > 0,

which is true for φ(x) ≥ 0 and nondecreasing ψ(x) > 0. Since F (t) → 0 t →
∞ (see (17) ) and (35) is valid, then there exists t0 such that for all t > t0

∫ ∞

m
c(x, t)dx =

∫ ∞

0
c(x, t)dx−

∫ m

0
c(x, t)dx =

∫ ∞

m
c̄(x)dx + δ(t) (38)

where δ(t) ≤ ε for all t > t0. Inserting (37) and (38) into (36) yields
∫ ∞

0
|c(x, t)− c̄(x)|dx ≤ M2me−(

√
2Q−ε)t + 3ε. (39)

(35) and (39) prove Theorem 2.

References

[1] G. M. Fikhtengolz, Differential and integral calculus. V. 2, Nauka, Moscow,
1966, in Russian.

9



[2] H. Gajewski, ”On a first order partial differential equation with nonlocal
nonlinearity,” Mathematische Nachrichten 111 (1983), 289–300.

[3] V. A. Galkin and P. B. Dubovskii, ”Solutions for the coagulation equation
with unbounded kernels,” Differential Equations 22 (1986), 504–509.
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