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Abstract

The paper deals with a numerical solution of the inverse stationary trans-
port problem in a slab. More precisely, our aim is to reveal a source function
on the basis of boundary observation (Problem 1) or on the basis of internal
observation (Problem 2). The operator for Problem 1 has, generally, nonzero
kernel, and to garantee unique solvability of inverse problem, we select some
special classes of functions with zero kernel. We derive iterative algorithms
depending on these special classes. Then we present the results on numerical
solution at different conditions and some specific examples.

1 Main notions and statements

We are concerned with the following stationary one-velocity transport prob-
lem in a slab 0 ≤ z ≤ H [1, 2]:

Aφ def= µ
∂φ(µ, z)

∂z
+ φ(µ, z)− b(z)

2

∫ 1

−1
p(µ, µ′)φ(µ′, z)dµ′ = f(µ, z), (1)

0 < z < H, −1 ≤ µ ≤ 1, φ(µ, z)|Γ− = φ(Γ−)
def= (φ(1)

(Γ−)(µ), φ(2)
(Γ−)(µ)),

4This work was supported by the Russian Foundation for the Basic Re-
search (grant 97-01-00275)
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where 0 ≤ b(z) ≤ b1 = const < 1, H < ∞, and the set Γ− corresponds to
the incoming flow in the slab 0 ≤ z ≤ H:

Γ− =
{

(µ, z) : (µ ∈ [0, 1], z = 0) ∪ (µ ∈ [−1, 0], z = H)
}

.

The phase function p(µ, µ′) ≥ 0 satisfies the condition

1
2

∫ 1

−1
p(µ, µ′)dµ′ = 1 ∀µ ∈ [−1, 1]. (2)

If we deal with isotropic scattering, then p(µ, µ′) ≡ 1.
Let us define the following sets:

X =
{

(µ, z) : µ ∈ [−1, 1], z ∈ [0, H]
}

,

Γ+ =
{

(µ, z) : (µ ∈ [−1, 0], z = 0) ∪ (µ ∈ [0, 1], z = H)
}

and introduce Hilbert spaces H1
2 , L2,−, L2,+,

H1
2 =

{

φ : φ ∈ L2, ‖φ‖H1
2

=
(

‖φ‖2
L2

+
∥

∥

∥µ
∂φ
∂z

∥

∥

∥

2

L2

)1/2}
,

L2,− =
{

γ(−)(µ) def= (γ(1)
(−)(µ), γ(2)

(−)(µ))
}

with

‖γ(−)‖L2,− =
[

1
∫

0

µ|γ(1)
(−)(µ)|2dµ +

0
∫

−1

µ|γ(2)
(−)(µ)|2dµ

]1/2
,

L2,+ =
{

γ(+)(µ) = (γ(1)
(+)(µ), γ(2)

(+)(µ)) with

‖γ(+)‖L2,+ =
[∫ 0

−1
µ|γ(1)

(+)(µ)|2dµ +
∫ 0

1
µ|γ(2)

(+)(µ)|2dµ
]1/2

.

The components γ(1)
(−)(µ) and γ(2)

(+)(µ) are defined for µ > 0, and the com-

ponents γ(2)
(−)(µ) and γ(1)

(+)(µ) – for µ<0.
We consider some subsets Xc ⊂ X and Xobs ⊂ X to specify the areas of

reconstructing of source functions and the areas of observations, respectively.
The following subspaces are also used below:

L(obs)
2 = {f : f ∈ L2(X), f ≡ 0 in X\Xobs},

L(c)
2 = {f : f ∈ L2(X), f ≡ 0 in X\Xc}.
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If φ is a solution of (1), then

φ(µ, z) =



















φ(1)
(Γ−)(µ)e−

z
µ +

∫ z

0
e−

z−z′
µ F (µ, z′)

dz′

µ
, µ > 0,

φ(2)
(Γ−)(µ)e

(H−z)
µ −

∫ H

z
e−

z′−z
|µ| F (µ, z′)

dz′

µ
, µ < 0,

(3)

where
F (µ, z) def=

1
2
b(z)

∫ 1

−1
p(µ, µ′)φ(µ, z)dµ + f(µ, z).

The following assertion is true [3]:

Theorem 1 If f ∈ L2 and φ(Γ) ∈ L2,−, then:
(1) there exists a unique function φ ∈ H1

2 which is the solution to problem
1;

(2) the function φ satisfies equation (1) almost everywhere in X, and
boundary condition for almost all µ;

(3) the following estimates hold:

C[‖f‖L2 + ‖φ(Γ−)‖L2,− ] ≤ ‖φ‖H1
2
≤ C̃[‖f‖L2 + ‖φ(Γ−)‖L2,− ], C, C̃ > 0,

where the constants C and C̃ are independent of φ, f , and φ(Γ−).

Below we consider two inverse boundary value problems: the problem
with ”surface observation” and the problem with an ”internal observation”.
Let us formulate them.

We consider the following boundary value problem

Aφ = f + mcv in X, φ = φ(Γ−) on Γ(−),

where mc is the characteristic function of subset Xc ⊂ X, mes(Xc) 6= 0 :
mc(µ, z) = 1 on Xc and mc(µ, z) = 0 on X \ Xc. Also, we assume f ∈
L2(X), v ∈ L2(Xc).

We point out that v ≡ 0 on X\Xc.
Let us assume that the function v ( ”a control function”) is unknown

while we know an observation function φobs ∈ L2,+ given on an observation
subset Γ+

(obs) ⊂ Γ+, mes(Γ+
(obs)) 6= 0. We set

mobs
def=

{

1 on Γ+
(obs);

0 on Γ+\Γ+
(obs).
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Let φ(0) be a solution of the problem

Aφ(0) = f in X, φ(0) = φ(Γ−) on Γ−.

Then we can formulate the following inverse problem for recovering the
source function v based on the boundary observations:
for given f ∈ L2(X), φobs ∈ L2,+ find φ1 ∈ H1

2 , v ∈ L(c)
2 such that

Aφ1 = f + mc v in X, φ1 = φ(0) on Γ−, (4)

and v yields minimum of the functional

α||mc v||2L2
+ ||mobs(φ1 − φobs)||2L2,+

, α = const ≥ 0.

Now we can reformulate (4) as the following inverse problem for the func-
tion φ = φ1 − φ(0) (Problem 1):
for given φ(0) ∈ H1

2 , φobs ∈ L2,+ find φ ∈ H1
2 , v ∈ L2(X) such that

Aφ = mc v in X, φ = 0 on Γ−, inf
v

J1(φ, v), (5)

where
J1(φ, v) = α||mc v||2L2

+ ||mobs(φ− (φobs − φ(0)))||L2,+ , (6)

α = const ≥ 0, φobs ∈ L2,+.

This replacement is performed to zero values of φ on Γ− and to remove the
term f in the right-hand side of the equation (4). Also, from this point we
can treat the functions φ and v as functions that can change their sign, and
we do not need to consider the transport problem in the nonnegative cone.
It is worth pointing out that in the last case some of the assertions below
can be proved easier.

Hereafter we set φobs ≡ 0 on Γ+\Γ+
(obs) in the inverse problem (5).

Let φobs is given on some subset Xobs ⊂ X, mes(Xobs) 6= 0. Let, as before,
mobs be the characteristic function of Xobs. If we have internal observation
of function φ, then the inverse problem (Problem 2) can be formulated as fol-
lows:
for given φ(0) ∈ H1

2 , φobs ∈ L2(X) find φ ∈ H1
2 , v ∈ L2(Xc) such that

Aφ = mc v in X, φ = 0 on Γ−, inf
v

J2(φ, v), (7)
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where
J2(φ, v) = α||mc v||2L2

+ ||mobs(φ− (φobs − φ(0)))||2L2
,

α = const ≥ 0, φobs ∈ L2(Xobs),

and we assume hereafter that φobs ≡ 0 on X\Xobs, v ≡ 0 on X\Xc. Our aim
below is investigating inverse problems (5), (7).

If we consider the problem

Aφ = v in X, φ = 0 on Γ−, (8)

then we can represent its solution in the following form:

φ = A−1 v, (9)

where A−1 : L2(X) 7→ H1
2 .

We need also to introduce in H1
2 the trace operator

P(+)φ
def= φ|Γ+ , P(+) : H1

2 7→ L2,+

and resolution operators B, Boc, which map the source function v to the
trace of the solution φ of problem (8):

B def= P(+)A−1 : L2(X) 7→ L2,+,

Boc
def= mobsBmc : L2(X) 7→ L2,+.

2 Sufficient conditions for reconstructing source
functions from boundary observations

An important question is if it is possible to reconstruct uniquely a source
function v(µ, z) on the basis of observation data φ|Γ+ . A closely related
problem is the problem if the kernel of operator B is trivial. In general,
KerB 6= {0}. Indeed, if we consider a smooth function φ with a compact
support over z, then Bv = 0 with v = Aφ 6= 0. Hence, in this case v ∈ KerB.

Our nearest aim is to select some classes of functions such that they have
no intersection with KerB. First, we introduce the set U1 containing all
functions of the form

v(µ, z) =
{

e−(H−z)/µ v1(µ), µ > 0,
ez/µ v2(µ), µ < 0,
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where (v1, v2) ∈ L2,+.

Lemma 1 [4] U1 ∩Ker B = {0}.

The lemma below claims that isotropic source function (v = v(z)) can,
theoretically, be reconstructed exactly (i.e., it is reconstructable). So, it is a
sufficient condition for unique solvability of equation Bv = φ|Γ+ in the class
of isotropic functions.

Lemma 2 [4] Let U2 = {v : v = v(z)} and p(µ, µ′) = 1. Let φ = Bv.
Then there is no v1(z) such that the corresponding solution φ1 = Bv1 has the
same trace on Γ+, i.e. for all v1(z) 6= v(z) we have Bv1|Γ+ 6= φ|Γ+. By other
words,

Ker B ∩ U2 = {0}.

Remark. Since, in general, KerB 6= {0} then there exists another non-
isotropic source function v1(µ, z) dependent of µ with Bv1 = φ|Γ+ .

Let us look for other classes of reconstructable source functions having
no intersection with KerB at p(µ, µ′) ≡ 1.

Let for some integer n ≥ 0 and real numbers {ai}n
i=0

v(µ, z) =
n

∑

i=0
aiµiv(i)

i (z), (10)

where f (i) means the i-th derivative of f , and for all i, 0 ≤ i ≤ n,

vi ∈ C(i)[0, H], v(k)
i (0) = v(k)

i (H) = 0, 0 ≤ k ≤ i.

If there is a nonzero solution of (1) φ(µ, z) such that φ|Γ+ = φ|Γ− ≡ 0,
then, similarly (3), we obtain

φ(µ, z) =
e−z/µ

µ

∫ z

0
ey/µ

[ n
∑

i=0
aiµiv(i)

i (y) +
1
2
b(y)

∫ 1

−1
φ(µ′, y)dµ′

]

dy. (11)

Integration by parts gives us the equality

∫ z

0
ey/µµiv(i)

i (y)dy =
i

∑

k=1

ez/µµi−k+1(−1)k−1v(i−k)
i (z) + (−1)i

∫ z

0
ey/µvi(y)dy.

(12)
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At z = 0 and z = H the first summand, expressed by the sum, is equal to
zero because of the above assumptions on vi. So, substituting (12) in (11) at
z = H yields for all −1 ≤ µ ≤ 1:

0 = φ(µ,H) =
e−H/µ

µ

∫ H

0
ey/µ

[ n
∑

i=0
ai(−1)ivi(y) +

1
2
b(y)

∫ 1

−1
φ(µ′, y)dµ′

]

dy.

The case µ = 0 is also included (if we treat µ = 0 as the limit µ → 0) due to
the following correlation:

lim
µ→0

∫ z

0

e−(z−y)/µ

µ
f(y)dy = lim

µ→0
lim

∆z→0

∫ z

z−∆z

e−(z−y)/µ

µ
f(y)dy = f(z).

Since the contents of square brackets depends only on y and the integral is
equal to zero for all µ, then also [5]

n
∑

i=0
(−1)iaivi(y) +

1
2
b(y)

∫ 1

−1
φ(µ′, y)dµ′ = 0, 0 ≤ y ≤ H. (13)

We substitute (12) and (13) in (11) and obtain

φ(µ, z) =
n

∑

i=0
ai

i
∑

k=1

(−1)k−1µi−kv(i−k)
i (z). (14)

Now we substitute this expression for φ in (13), and after integration over µ
we finally obtain a correlation for vi:

n
∑

i=0
ai

[

(−1)ivi(z) +
1
2
b(z)

i
∑

k=1

(−1)k−1 + (−1)i−1

i− k + 1
v(i−k)

i (z)
]

= 0, 0 ≤ z ≤ H.

(15)
We are now in a position to prove the following lemma.

Lemma 3 Let there is a function f(z) ∈ C(n)[0, H] such that in (10) vi(z) =
f (αi)(z), 0 ≤ i ≤ n, where integer numbers αi ≥ 0 and

f (k)(0) = f (k)(H) for 0 ≤ min
i

αi ≤ k ≤ max
i

αi < ∞. (16)

Let us denote the corresponding class of v as U3. Then

Ker B ∩ U3 = {0}.
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Proof. Substituting these function vi = f (αi) into (15) yiels us a linear
ordinary differential equation with respect to f(z). Recalling (16) we obtain
the desired equality f(z) ≡ 0. Consequently, v ≡ 0. This proves the lemma.
Corollary 1. If αi = n− i then the source function is multiplicative, i.e.,

v(µ, z) = h(µ)f (n), h(µ) =
n

∑

i=0
aiµi. (17)

This class of functions v we denote by U4, U4 ⊂ U3. Consequently,

Ker B ∩ U4 = {0}. 2

Corollary 2. If αi = i then the source function takes the form

v(µ, z) =
n

∑

i=0
aiµif (i). (18)

This class of functions v we denote by U5, U5 ⊂ U3. Consequently,

Ker B ∩ U5 = {0}. 2

Observing the results of this section, we see that there are source func-
tions (from classes U1, U2, U3, U4, U5) such that all other source functions
from the class under consideration yield other observation data from L2,+.
Consequently, on the basis of such observation data we can uniquely (in the
corresponding class) reconstruct source functions.

3 Solvability of inverse problem

To minimize functional J1 defined in (6) we consider its variation δJ1 and
equal it to zero. So, we obtain

δJ1 = J1(2α(mcv, δv) + 2(mobs(φ− φobs), δφ)L2,+ ,

where (., .) means the scalar product in L2(X). Hence,

α(mcv, δv) + (mobs(φ− φobs), δφ)L2,+ = 0. (19)
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Since

A∗q(µ, z) = −µ
∂q(µ, z)

∂z
+ q(µ, z)− 1

2
b(z)

∫ 1

−1
p(µ, µ′)q(µ′, z)dµ′,

then integration by parts yields

(A∗q, δφ) = −(q, δφ)L2,+ + (q, δv).

We set A∗q = 0 and obtain

(q, δφ)L2,+ = (q, δv).

If, in addition, we impose on q the boundary condition q|Γ+ = mobs(φ−φobs),
then we finally obtain from (19) the basic correlation

(α mcv + mcq, δv) = 0. (20)

In general, δv can be an arbitrary function from L2(X). Hence, we arrive at
the control equation α mcv + mcq = 0.

So, Problem 1 (equation (5)) can be reformulated as follows:
Problem 1. For given φ(0) ∈ H1

2 , mobsφobs ∈ L2,+ find φ ∈ H1
2 , q ∈ H1

2 , v ∈
L(c)

2 such that
Aφ = mcv in X, φ= 0 on Γ−, (21)

A∗q = 0 in X, q = mobsP(+)(φ− (φobs − φ(0))) on Γ+, (22)

αv + q = 0 in Xc, v ≡ 0 in X\Xc.2 (23)

Applying the results of the previous section we can observe that the so-
lution of (21)–(23) cannot, in general, yield a true source function v(µ, z)
because of nonzero kernel KerB. So, let us restrict our consideration to the
classes U1, U2, and U4.

First, we consider class U2 of isotropic functions. In this case deviation δv
is independent of µ, and, hence, control equation (23) does not follow from
correlation (20) because µ-independent functions δv are not dense in L2(X).
Writing the scalar product in L2(X) as integrals, we obtain from (20) the
following identity:

∫ H

0

(

2αmcv(z) + mc

∫ 1

−1
q(µ, z)dµ

)

δv(z)dz = 0.

11



Since {δv(z)} is dense in L2[0, H], then control equation (23) can be replaced
by

αmcv(z) +
1
2
mc

∫ 1

−1
q(µ, z)dµ = 0. (24)

Similarly, for class U1 we obtain from (20)

∫ 1

0

[1
2
αµmcv1(µ)

(

1− e−2H/µ
)

+ mc

∫ H

0
e−(H−z)/µq(µ, z)dz

]

δv1(µ)dµ

+
∫ 0

−1

[1
2
αµmcv2(µ)

(

e2H/µ − 1
)

+ mc

∫ H

0
ez/µq(µ, z)dz

]

δv2(µ)dµ = 0.

Consequently, for reconstruction source functions from class U1, control equa-
tion (23) should be replaced by

1
2
αµmcv1(µ)

(

1− e−2H/µ
)

+
∫ H

0
e−(H−z)/µmcq(µ, z)dz = 0, µ > 0,

1
2
αµmcv2(µ)

(

e2H/µ − 1
)

+
∫ H

0
ez/µmcq(µ, z)dz, µ < 0. (25)

These reasonings can be applied to class U4, too. If we replace v(µ, z) by
h(µ)v(z) and assume that µ-dependent multiplier h(µ) is prescribed, then
control equation (23) takes the form

αv(z)
∫ 1

−1
mch2(µ)dµ+

∫ 1

−1
mch(µ)q(µ, z)dµ = 0, 0 < z < H, v(0) = v(H) = 0.

(26)
Othewise, if the function f (n)(z) is known, then we arrive at the following
control equation for computing h(µ):

αh(µ)
∫ H

0
mc

(

f (n)(z)
)2

dz +
∫ H

0
mcq(µ, z)f (n)(z)dz, h(µ) =

n
∑

i=0
aiµi. (27)

At this point we finish the theoretical analysis of Problem 1.
Analoguously to deriving equations (21)–(23), the second inverse problem

can be reformulated as follows:

Problem 2. For given mobs(φobs − φ(0)) ∈ L2(X), find v ∈ L(c)
2 such that

Aφ = mcv in X, φ = 0 on Γ−, (28)
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A∗q = mobs(φ− (φobs − φ(0))) in X, q = 0 on Γ+, (29)

αmcv + mcq = 0 in X.2 (30)

For Problems 1, 2 the following statements hold [4]:

Lemma 4 If α>0, then inverse problem (21)–(23) has a unique solution for
any mobsP+(φobs − φ(0)) ∈ L2,+.

If α = 0, mobsP(+)(φobs − φ(0)) is in the range R(Boc) of Boc = mobsBmc

and v ∈ U1 or U2, then this problem also has a unique solution.

Lemma 5 If α > 0, then problem (28)–(30) has a unique solution for any
mobs(φobs − φ(0)) ∈ L2. If α = 0, mobs(φobs − φ(0)) ∈ R(mobsA−1mc) and
Xobs ⊇ Xc, then this problem also has a unique solution.

Similar lemmas for the case α = 0 can be also formulated for classes U3,
U4, U5.

To construct an approximate solution of (21)–(23), the following algo-
rithm can be applied:

Aφn = mcvn in X, φn = 0 on Γ−, (31)

A∗qn = 0 in X, qn = mobsP+(φn − (φobs − φ(0))) on Γ+, (32)

vn+1 = vn − τ1(αvn + qn) in Xc, vn+1 ≡ 0 in X\Xc, n = 0, 1, ..., (33)

where v0 ∈ L(c)
2 and τ1 = 2/(2α + γ1) with

γ1 =
[

(1− b1)(1 +
√

1− b1 coth(H
√

1− b1)
]−1

.

Taking into account the properties of our problem and the results of
iterative processes theory, the following result can be obtained:

Lemma 6 [4] If α > 0 and τ1 = 2/(2α + γ1), then algorithm (31)–(33)
converges, and the following estimate holds:

‖φ− φn‖H1
2

+ ‖q − qn‖H1
2

+ ‖mc(v − vn)‖L2 ≤ C
(

γ1

2α + γ1

)n

→ 0, n →∞,

where C = C(v0, φobs, φ(0)) = const > 0.
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The algorithm for Problem 2 can be written as follows:

Aφn = mcvn in X, φn = 0 on Γ−,

A∗qn = mobs(φn − (φobs − φ(0))) in X, q = 0 on Γ+,

vn+1 = vn − τ2(αvn + qn) in Xc,

vn+1 ≡ 0 in X\Xc, n = 0, 1, . . . ,

(34)

where
τ2 = 2/(2α + γ2), γ2 = 1/(1− b1)2.

Similarly to the previous lemma, we have:

Lemma 7 [4] If α > 0 and τ = 2/(2α + γ2), then algorithm (34) converges,
and the following estimate holds:

||φ− φn||H1
2

+ ||q − qn||H1
2

+ ||mc(v − vn)||L2

≤ C ·
(

γ2

2α + γ2

)n

→ 0 as n →∞

with C = C(v0, φobs, φ(0)) = const > 0.

Remark. In [6] other classes of iteration methods are formulated, which can
be also applied to the problems under consideration. 2

4 Description of numerical methods

For simplicity we further denote φobs − φ(0) just by φobs. N is equal to the
number of grid points at the axis z, 2M is the number of grid points along
“µ”-axis. We set µj = j∆µ, −M ≤ j ≤ M, j 6= 0, ∆µ = 2/(2M − 1).
Also, zi = (i − 1)∆z, 1 ≤ i ≤ N , ∆z = 1/(N − 1). We set φi,j = φ(µj, zi).
For a fixed n (iteration step) problem (31)–(33) is approximated by a finite-
difference scheme justified in [1], that can be written in the following form
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for direct equation (31):






















































































µj
φi+1,j − φi,j

∆z
+ φi+1,j −

b
2

k=M
∑

k = −M
k 6= 0

∆µφi+1,k = vi,j, i = 1, . . . , N − 1, j = 1, . . . , M,

φ1,j = 0, j = 1, . . . , M,

µj
φi+1,j − φi,j

∆z + φi,j − b
2

k=M
∑

k = −M
k 6= 0

∆µφi,k = vi,j, i = 1, . . . , N − 1, j = −1, . . . ,−M,

φN,j = 0, j = −1, . . . ,−M.

Then we solve adjoint equation (32):







































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
















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
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
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











−µj
qi+1,j − qi,j

∆z + qi+1,j − b
2

k=M
∑

k = −M
k 6= 0

∆µ qi+1,k = 0, i = 1, . . . , N − 1, j = −1, . . . ,−M,

q1,j = (φn − φobs)(0, µj) j = −1, . . . ,−M,

−µj
qi+1,j − qi,j

∆z + qi,j − b
2

k=M
∑

k = −M
k 6= 0

∆µ qi,k = 0, i = 1, . . . , N − 1, j = 1, . . . , M,

qN,j = (φn − φobs)(H,µj), j = 1, . . . , M.

To solve the system of arizing systems of linear equations we use method
[7]. So, we find φn and qn. After that we solve control equation (33), which
is approximated as follows:

(vn+1)i,j = (vn)i,j(1− ατ1)− τ1(qn)i,j,
(vn+1)i,j = 0, (µj, zi) ∈ X \Xc.

We are ready then to pass to the next, n + 1-th, iteration step.
Similarly, the computer version of algorithm (34) for Problem 2 is ap-
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proximated by the following finite-difference scheme:

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
















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
















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
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
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









µj
φi+1,j − φi,j

∆z
+ φi+1,j −

b
2

k=M
∑

k = −M
k 6= 0

∆µφi+1,k = vi,j, i = 1, . . . , N − 1, j = 1, . . . , M,

φ1,j = 0, j = 1, . . . , M,

µj
φi+1,j − φi,j

∆z + φi,j − b
2

k=M
∑

k = −M
k 6= 0

∆µφi,k = vi,j, i = 1, . . . , N − 1, j = −1, . . . ,−M,

φN,j = 0, j = −1, . . . ,−M.

Then we solve the adjoint equation:

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
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


















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




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


















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




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







−µj
qi+1,j − qi,j

∆z + qi+1,j − b
2

k=M
∑

k = −M
k 6= 0

∆µ qi+1,k = (φn − φobs)i,j,

i = 1, . . . , N − 1, j = −1, . . . ,−M,

q1,j = 0, j = −1, . . . ,−M,

−µj
qi+1,j − qi,j

∆z + qi,j − b
2

k=M
∑

k = −M
k 6= 0

∆µ qi,k = (φn − φobs)i,j,

i = 1, . . . , N − 1, j = 1, . . . , M,

qN,j = 0, j = 1, . . . , M.

After that we solve control equation:

(vn+1)i,j = (vn)i,j(1− ατ2)− τ2(qn)i,j,
(vn+1)i,j = 0, (µj, zi) ∈ X \Xc.

Then we pass to the next iteration step.
As a criterion for finishing iterational processes (21)–(23), (28)–(30), the

following inequality is used:

r =
‖vn+1 − vn‖L2

‖vn‖L2

≤ ε
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with ε = 0.0005. Norm ‖.‖ is a discrete case of norm L2(X).
The numerical experiment is performed in accordance with the following

scheme:
1. We solve the direct equation with given right-hand side v̂ (test source

function) and obtain observation data φobs.
2. Using the iterational processes (21)–(23), (28)–(30) (subject to Prob-

lems 1, 2) and observation data φobs found at the previous step, we obtain
an approximate source solution v.

3. After completing the iterational process we compare the exact test
solution v̂ and its recovered analogue v. For this case we introduce the
residual R that shows the deviation of the recovered solution v from the
exact solution v̂:

R =
‖v̂ − v‖L2

‖v̂‖L2

.

5 Experimental results

To perform numerical experiments we always set b(z) ≡ b = 0.5, p(µ, µ0) ≡
1, N = 2M , Γ(obs)

+ ≡ Γ+, and H = 1. Hence, γ1 = 0.925, γ2 = 4, and for
α ≤ 0.01 we approximately have τ1 = 2.115, τ2 = 0.497.

Numerical experiment 1. In this case we have reconstructed some
test source functions if Xc = Xobs = X on the basis of internal observations
(Problem 2) using algorithm (34). The value of α is taken equal to α = 0.01
and τ2 ≈ 0.5.

First, we treat a test source function v̂ = z(H− z)(1−µ2). Its graph and
its reconstructed image are presented at Figures 1.1 and 1.2, respectively.
We have here the number of iterations n = 89 and the residual R = 0.025.

Secondly, we consider a test source functions v̂ = µz. Its exact graph
and a reconstructed image can be found in Figures 1.3 and 1.4, respectively.
Here n = 95 and R = 0.029.

Thirdly, we consider v̂ = sin2(2πz) cos(1
2πµ). The number of grid points

is equal to 26 (N = 2M = 26). Figures 1.5 and 1.6 show the exact source
function and its recovered analogue, respectively. To obtain better result we
have taken at this point α = 0.005, and we have here R = 0.06, n = 186.

17



Figure 1.1. Exact solution v̂ = z(H − z)(1− µ2).

Figure 1.2. Numerical solution v,
Xc = Xobs = X, α = 0.01, n = 89, R = 0.025.
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Figure 1.3. Exact solution v̂ = µz, H = 1.

Figure 1.4. Numerical solution v,
Xc = Xobs = X, α = 0.01, n = 95, R = 0.029.
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Figure 1.5. Exact solution v̂ = sin2(2πz) cos(1
2πµ), H = 1.

Figure 1.6. Numerical solution v,
Xc = Xobs = X, α = 0.005, n = 186, R = 0.06, N = 26.
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Numerical experiment 2.
In this case we reconstruct an isotropic (µ-independent) source function

on the basis of boundary observations using algorithm (31), (32), and the
following correlation

vn+1 = vn − τ1

(

αmcvn +
1
2

∫ 1

−1
mcqndµ

)

.

This replacement of (33) is caused by (24).
As a test we take source function v̂ = 1 on Xc = [−1, 1] × [0.3H, 0.7H]

and zero otherwise. As usually, H = 1.
Figure 2.1 shows the exact value of v̂, Figure 2.2 describes restored func-

tion v if Xobs = Γ+ (Problem 1), and, just to compare, Figure 2.3 shows
restored function v if Xobs = X ⊃ Xc (Problem 2). The result is obtained at
the same α = 0.01.

It is seen explicitely that the function v is well reconstructed in both
cases and there is no need to use the overdetermined information given on
Xobs = X because the result obtained from the boundary observation is
rather satisfactory and needs less iterations.
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Figure 2.1. Exact solution v̂ = 1, Xc = [0.3H, 0.7H], H = 1.
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Figure 2.2. Numerical solution v for Xobs = Γ+.
n = 14, α = 0.01, R = 0.0446.

23



Figure 2.3. Numerical solution v for Xobs = X ⊃ Xc.
n = 96, α = 0.01, R = 0.053.
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Numerical experiment 3.
In this experiments we reconstruct source function in the case of unsuffi-

cient internal information: Xc 6⊂ Xobs. So the conditions of Lemma 5 do not
hold. We use algorithm (34) with control equation in the most general form
(30) and set v̂ = 1 in Xc.

First, Xc has a nonzero intersection with Xobs. We set Xc = [0.07, 0.55],
Xobs = [0.3, 1], µ ∈ [−1, 1]. Exact and reconstructed source functions are
presented in Figures 3.1 and 3.2, respectively.

If Xc ∩Xobs = ∅ then the result is worse, it is demonstrated in Figure 3.3
for Xobs = [0.6, 1].

The last case, Xobs ⊂ Xc, is considered for Xobs = [0.3, 0.45]. The result
is very bad, too (Figure 3.4).

So, these numerical results demonstrate that internal reconstructing on
the basis of lack of information cannot, generally speaking, give us a suitable
result.

Figure 3.1. Exact solution v̂ = 1, Xc = [0.07, 0.55].
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Figure 3.2. Numerical solution. Xc ∩Xobs 6= ∅,
Xobs = [0.3, 1], R = 0.48, n = 130, α = 0.01.
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Figure 3.3. Numerical solution. Xc ∩Xobs = ∅,
Xobs = [0.6, 1], R = 0.663, n = 74, α = 0.01.
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Figure 3.4. Xobs ⊂ Xc, Xobs = [0.3, 0.45], R = 0.549, n = 133, α = 0.01.
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Numerical experiment 4.
In these experiments we use boundary observations Xobs = Γ+ for recon-

structing source function in space L2(X). We do not assume that v ∈ Ui,
i = 1, 2, . . . , 5. The conditions of Lemmas 1–3 do not hold. Therefore
there exists a nonzero kernel and we cannot use an improved form of con-
trol equation (e.g., (24)–(27)). So, we use control equation in the gen-
eral form (34). In this case we also cannot expect a correct reconstruc-
tion. Our numerical results demonstrate these reasonings. We take a test
solution φ(µ, z) = z(H − z), then find the corresponding source function
v̂(µ, z) = µ(H − 2z) + (1 − b)z(H − z) (Figure 4.1). Obviously, this sourse
function belongs to the kernel of operator B. After that we take the trace
φ|Γ+ and reconstruct the function v (Figure 4.2). To minimize functional J1

this result goes to zero (but not to the desired v̂!). In Figure 4.3 we demon-
strate this fact by drawing the graphs of v̂ and v at z = 0.5H (H = 1).

Figure 4.1. Exact solution v̂ = µ(H − 2z) + (1− b)z(H − z).
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Figure 4.2. Numerical solution v. Xobs = Γ+. Nonzero kernel. Incorrect
reconstruction (α = 0.01).

Figure 4.3. Xobs = Γ+. Correct function v̂ and incorrect reconstructing at
z = 0.5H.
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Numerical experiment 5. For the case of Problem 2 (internal obser-
vations) with test function v̂ = 0.25z(H−z) and Xc = Xobs = X, we present
here the dependence of residual R, number of iterations n and value of func-
tional J2 on the parameter α (Figures 5.1, 5.2, 5.3, respectively). Besides
Figures, these results are presented in Table 1 below.

Table 1.

α 1.5 1 0.5 0.1 0.05 0.01 0.001
R 0.669 0.594 0.467 0.234 0.163 0.059 0.0186
n 13 14 16 36 50 94 148

J2 · 105 332 271 177 49.7 26.4 5.02 0.548

The results in Table 2 demonstrate the dependence of the residual and the
number of iterations on the number of grid points N = 2M . Here α = 0.01,
the test function is taken equal to v̂ = 0.25z(H−z). We can see that in such
simple cases there is no need to increase the number of grid points.

Table 2.

N = 2M 10 16 20 26
R 0.0542 0.0582 0.0593 0.0604
n 92 93 94 94
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Figure 5.1. R = R(α), Xc = Xobs = X.

Figure 5.2. n = n(α), Xc = Xobs = X.

Figure 5.3. J2 = J2(α), Xc = Xobs = X.
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