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Existence Theorem
for Spatially Inhomogeneous Boltzmann Equation
from the Coagulation-Fragmentation Dynamics 1

One of the most important mechanisms of evolution of disperse systems consist-
ing of two phases one of which is distributed into another one, is the mechanism of
coagulation (merging) and fragmentation of particles. This process in the spatially
inhomogeneous case may be modelled by the following kind of Boltzmann equation
[7]:

∂c(x, z, t)
∂t

+ divz(v(x, z, t)c(x, z, t)) =
1
2

∫ x

0
K(x− y, y)c(x− y, z, t)c(y, z, t)dy−

−c(x, z, t)
∫ ∞

0
K(x, y)c(y, z, t)dy + q(x, z, t)− a(x, z, t)c(x, z, t)+

+
∫ ∞

x
F (y − x, x)c(y, z, t)− 1

2
c(x, z, t)

∫ x

0
F (x− y, y)dy, x ≥ 0, t > 0, (1)

c(x, z, 0) = c0(x, z) ≥ 0, x ≥ 0. (2)

Here c(x, z, t) is the distribution function of particles with mass x ∈ R1
+ at the

time moment t ≥ 0 in the space point z = (z1, z2, z3) ∈ R3. Nonnegative symmetric
functions K Υ F called the coagulation and fragmentation kernels are supposed to
be known from the physical background of the process. Their influence on the particle
evolution is the most essential because they characterize the intensity of merging of
particles of masses x and y and splitting of particles with the mass x + y onto
two particles with masses x and y. From physical point of view these kernels should
be symmetric, i.e. K(x, y) = K(y, x), F (x, y) = F (y, x) for all arguments. The
function v(x, z, t) ∈ R3 is the velocity of spatial transfer of particles of mass x in
the point z at the time t. The scalar function q(x, z, t) is the distribution function
of external sources of particles, and a(x, z, t) defines the intensity of absorbtion of
particles by external medium, i.e. it is proportional to effluxes. The functions v, q, a
are supposed to be known.

The initial value problem (1),(2) without fragmentation ( F ≡ 0 ) was studied
in [1,5,6,3] where a number of existence and uniqueness theorems was established on
different assumptions on the coagulation kernels, space velocity and initial data.

In this paper we prove existence of global continuous solution of the initial value
problem (1), (2).

1This work was supported by the Russian Foundation for the Basic Research
(Grant 97-01-00333)
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First, we fix some T > 0 and write the problem (1),(2) in the following integral
form

c(x, z, t) = c0(x, z(0)) +
∫ t

0
(S(c)− cdivzv) (x, z(s), s)ds. (3)

Here z(0) is the starting point of the characteristic of equation (1) passing through the
point (x, z, t); the collision operator S is equal to the right-hand side of the equation
(1). We assume that the characteristic equation has a unique solution z(x, s).

We impose the following conditions on space transfer and effluxes which do not
restrict the variety of physically meaningful processes2:

a(x, z, t) + divzv(x, z, t) ≥ −b = const, 0 ≤ t ≤ T, z ∈ R3
+, x ≥ 0. (4)

The functions a, v Υ divzv are assumed to be continuous.
Let for some b(x) ≥ 0 we have the following apriori estimate of the solution to (1),

(2):

sup
0≤t≤T

sup
z∈R3

∫ ∞

0
b(x)c(x, z, t)dx ≤ M = const < ∞. (5)

This estimate can be proved in some cases [4]. If b ≡ const and the coagulation
kernel is bounded along with decreasing fragmentation one then (5) allows to prove
existence of a generalized solution. We show now that sometimes the estimate (5) may
be improved by moving the supremum over z into the integral. This minor correction
yields drastically different result allowing to prove existence of a continuous solution.

Lemma 1 Let (5) hold and there exist a monotonically increasing nonnegative func-
tion φ(x) such that

∫ ∞

0

dx
φ(x)

< ∞.

Let
sup
x,z

φ(x)c0(x, z) = M0 < ∞, (6)

∫ T

0
sup

x≥0,z∈R3
φ(x)q(x, z, s)ds = Q < ∞; (7)

and
φ(x)K(x− y, y) ≤ b(y) · φ(x− y). y ∈ [0, x/2] (8)

Assume that at least one of two following conditions on the fragmentation
∫ ∞

x

F (y − x, x)
φ(y)

dy ≤ r
φ(x)

, x > 0, r = const (9)

or
φ(x)F (y − x, x) ≤ b(y) (10)

is valid. Then the estimate (5) can be improved:

‖c‖ = sup
0≤t≤T

∫ ∞

0
sup

z
|c(x, z, t)|dx ≤ const. (11)

2In fact, from the continuity equation we see ∂ρ/∂t + divz(ρv) = 0 and from boundness of the
density ρ and its derivatives we have (4). This observation was pointed out to the author by
A.E.Aloyan.
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Proof. By throwing away the negative terms in (3) we obtain the inequality

cn(x, z, t) ≤ sup
z

c0(x, z) +
1
2

∫ t

t0

∫ x

0
K(x− y, y)cn(x− y, z(x, s), s)cn(y, z(x, s), s)dyds

+
∫ t

t0

{∫ ∞

x
F (y − x, x)cn(y, z(x, s), s)dy + q(x, z(x, s), s)

}

ds. (12)

Multiplying (12) by φ(x) we have with (8) taken into account

φ(x)cn(x, z, t) ≤ M0 +
∫ t

0

[

sup
x,z

[φ(x)c(x, z, s)]
∫ x/2

0
b(y)c(y, z(x, s), s)dy

+ φ(x)
∫ ∞

x
F (y − x, x)c(y, z(x, s), s)dy + φ(x)q(x, z(x, s), s)

]

ds. (13)

We introduce the notation

sup
x,z

φ(x)c(x, z, t) = f(t) (14)

and extract f(t) from the second integral summand in (13):

φ(x)
∫ ∞

x
F (y − x, x)c(y, z(x, s), s)dy ≤

{

rf(s) for (9);
∫∞
0 b(y)c(y, z(x, s), s)dy for (10).

By summarizing both cases we strengthen the inequality and obtain

f(t) ≤ M1 +
∫ t

0
(f(s)(1 + r) + 1)

[∫ ∞

0
b(y)c(y, z, s)dy

]

ds.

Here M1 = M0 + Q. Hence, taking into account (5) we come to the correlation

f(t) ≤ (M1 + M)eM(1+r)t ≤ M2, 0 ≤ t ≤ T. (15)

From (14), (15) we establish

c(x, z, t) ≤ M2/φ(x), x ≥ 0, z ∈ R3, t ∈ [0, T ].

Consequently,

‖c‖ ≤ M2

∫ ∞

0

dx
φ(x)

= const.

This proves Lemma 1.

Remark. The conditions of Lemma 1 are satisfied, e.g., for

K(x, y) ≤ const · exp(−α(x + y)), F (x, y) ≤ const, φ(x) = exp(αx), α > 0;

K(x, y) ≤ const, F (x, y) ≤ const · (1 + x + y)−1, φ(x) = (1 + x)k, k > 1.

We are now in position to formulate the global existence theorem for (1), (2).
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Theorem 1 Let the conditions of Lemma 1 be valid. Let for sufficiently large A the
integral

∫ ∞

A

K(x, y)
φ(y)

dy, x ∈ [0, B]

be bounded for any B < ∞ uniformly in x. Then there exists at least one continuous
nonnegative solution to the initial value problem (1), (2).

The proof is based on introducing the sequence {cn}∞n=1 of solutions of approxi-
mated problems with truncated compactly supported integral kernels. These kernels
should tend in the space C to the original ones on each compacta. Similarly to [2,
Lemma 2.2, Step 1] we show that {cn}∞n=1 is uniformly bounded on each compacta.
The estimate (11) is uniform one with regard to this sequence. Hence, it is possible
to pass to the limit under integral. Therefore we choose from {cn}∞n=1 a subse-
quence converging in C on a compact set. Then we double this compact set and
choose a subsubsequence and so on. Finally, after this standard diagonal process, we
have a subsequence tending to a continuous function c(x, z, t) on each compact set in
[0,∞)×R3× [0, T ]. Due to arbitrariness of T we get global existence of a continuous
solution.
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