Comment on singular solutions to the stationary coagulation equation

P.B.Dubovskii^{*} and I.W.Stewart[†]

(*) Obninsk Institute of Nuclear Power Engineering, Studgorodok 1, Obninsk 249020, Russia.

(†) Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK.

Abstract

We comment on our paper "Exact solutions for the coagulation–fragmentation equation".

We examine the stationary Smoluchowski coagulation equation

$$\frac{1}{2}\int_0^m K(m-m_1,m_1)c(m-m_1)c(m_1)dm_1 - c(m)\int_0^\infty K(m,m_1)c(m_1)dm_1 = 0 \quad (1)$$

with a symmetric non-negative coagulation kernel $K(m, m_1) = K(m_1, m), m, m_1 \ge 0$. A previous paper by the authors [1] demonstrated the surprising phenomenon of existence of stationary solutions to (1). A typical solution with this behaviour satisfies the equality

$$K(m, m_1)c(m)c(m_1) = \frac{1}{(m+m_1)^3}.$$
(2)

The bounded continuous coagulation kernel

$$K(m, m_1) = \frac{v(m)v(m_1)}{(m+m_1)^3} \quad \text{where} \quad v(m) = \begin{cases} m^3, \ 0 \le m \le 1\\ 1, \qquad m \ge 1 \end{cases}$$
(3)

yields the stationary solution

$$c(m) = \begin{cases} m^{-3}, \ 0 < m \le 1\\ 1, \qquad m \ge 1 \end{cases}$$
(4)

This mathematical phenomenon is really surprising and an attempt should be made to discuss this result from a physical point of view.

By considering the Smoluchowski model in the form

$$\frac{\partial}{\partial t}c(m,t) = \frac{1}{2} \int_0^m K(m-m_1,m_1)c(m-m_1,t)c(m_1,t)dm_1 - -c(m,t) \int_0^\infty K(m,m_1)c(m_1,t)dm_1, \quad m > 0$$
(5)

$$\frac{\partial}{\partial t}c(0,t) = -c(0,t) \int_0^\infty K(0,m_1)c(m_1,t)dm_1, \quad m = 0.$$
(6)

an attempt has been made in [2] to explain the occurrence of the above stationary solution. A similar approach connected with replacing Smoluchowski's model by another one was also considered by others when it was discovered that the coagulation kernel $K(m, m_1) = mm_1$ yields the paradoxical infringement of the mass conservation law after a critical time (see [3], [4] and refs. in [1]). There were suggestions to change the Smoluchowski equation to ensure the conservation of mass by replacing the second term in (1) with

$$mc(m,t)\int_0^\infty m_1c(m_1,0)dm_1$$

(see e.g. discussion in [3]). However, further research reported in the literature demonstrated the correctness of the original coagulation model [3,4]. This adapted coagulation model did not replace the original Smoluchowski equation. We anticipate that the model (5), (6) is destined for a similar fate: the reason is that in [2] it is assumed that the value of the function

$$f(m) = \int_0^m G(m, m_1) dm_1$$
(7)

at the point m = 0 is equal to zero independently of the integrand $G(m, m_1)$. However, an elementary computation can show that, for instance, the value of the function

$$f(m) = \int_0^m \frac{1}{m + m_1} dm_1 \tag{8}$$

at the point m = 0 is equal to $\ln 2$ despite the integrand being singular at zero. Following the argument presented in [2] it would have to be equal to zero which, as demonstrated by (8), cannot be true in general. A similar problem arises in the well known solution to the heat equation

$$u(x,t) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-(x-y)^2/4t} u_0(y) dy$$
(9)

at the initial time t = 0: direct substitution of t = 0 into (9) is impossible and hence we must pass to the limit $t \to 0$ in order to define u(x, 0) from (9).

The simple examples (8) and (9) show that the particular approach in [2] is fundamentally different to that in [1]. In [1] we study the Smoluchowski equation from the mathematical point of view, the value at zero being considered as the limit as $m \to 0$, all the results being mathematically rigorous.

The above discussion demonstrates that the model (5), (6) leads us away from a physical explanation of the mathematical phenomenon discovered in [1]. As an attempt to explain the phenomenon let us consider the bounded coagulation kernel (3) with the stationary solution (4). We can see that this stationary state is achieved due to a constant influx of small particles. The number of small particles is infinite and, moreover, is large enough to ensure the influx of small particles for all t > 0. The phenomenon of existence of stationary solutions of the pure coagulation equation therefore takes place due to the influence of a sufficiently large "infinity" of small particles. In conclusion, we would like to add that the above mentioned phenomenon of the infringement of the mass conservation law for $K(m, m_1) = mm_1$ is due to a different type of influence of infinity.

References

- [1] Dubovskiĭ P B, Galkin V A and Stewart I W 1992 J. Phys. A: Math. Gen. 25 4737
- [2] Simons S 1993 J. Phys. A: Math. Gen. 26 1259
- [3] Galkin V A 1984 Meteorology and Hydrology 5 33
- [4] Ernst M H, Ziff R M and Hendriks E M 1984 J. Coll. Interf. Sci. 97 266