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Abstract
We comment on our paper ”Exact solutions for the coagulation–fragmentation

equation”.

We examine the stationary Smoluchowski coagulation equation

1
2

∫ m

0
K(m−m1,m1)c(m−m1)c(m1)dm1 − c(m)

∫ ∞

0
K(m,m1)c(m1)dm1 = 0 (1)

with a symmetric non–negative coagulation kernel K(m,m1) = K(m1,m), m,m1 ≥
0. A previous paper by the authors [1] demonstrated the surprising phenomenon of
existence of stationary solutions to (1). A typical solution with this behaviour satisfies
the equality

K(m,m1)c(m)c(m1) =
1

(m + m1)3
. (2)

The bounded continuous coagulation kernel

K(m,m1) =
v(m)v(m1)
(m + m1)3

where v(m) =

{

m3, 0 ≤ m ≤ 1
1, m ≥ 1

(3)

yields the stationary solution

c(m) =

{

m−3, 0 < m ≤ 1
1, m ≥ 1

. (4)
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This mathematical phenomenon is really surprising and an attempt should be made to
discuss this result from a physical point of view.

By considering the Smoluchowski model in the form

∂
∂t

c(m, t) =
1
2

∫ m

0
K(m−m1,m1)c(m−m1, t)c(m1, t)dm1−

−c(m, t)
∫ ∞

0
K(m, m1)c(m1, t)dm1, m > 0 (5)

∂
∂t

c(0, t) = −c(0, t)
∫ ∞

0
K(0,m1)c(m1, t)dm1, m = 0. (6)

an attempt has been made in [2] to explain the occurrence of the above stationary
solution. A similar approach connected with replacing Smoluchowski’s model by another
one was also considered by others when it was discovered that the coagulation kernel
K(m, m1) = mm1 yields the paradoxical infringement of the mass conservation law
after a critical time (see [3], [4] and refs. in [1]). There were suggestions to change the
Smoluchowski equation to ensure the conservation of mass by replacing the second term
in (1) with

mc(m, t)
∫ ∞

0
m1c(m1, 0)dm1

(see e.g. discussion in [3]). However, further research reported in the literature demon-
strated the correctness of the original coagulation model [3,4]. This adapted coagulation
model did not replace the original Smoluchowski equation. We anticipate that the model
(5), (6) is destined for a similar fate: the reason is that in [2] it is assumed that the
value of the function

f(m) =
∫ m

0
G(m,m1)dm1 (7)

at the point m = 0 is equal to zero independently of the integrand G(m,m1). However,
an elementary computation can show that, for instance, the value of the function

f(m) =
∫ m

0

1
m + m1

dm1 (8)

at the point m = 0 is equal to ln 2 despite the integrand being singular at zero.
Following the argument presented in [2] it would have to be equal to zero which, as
demonstrated by (8), cannot be true in general. A similar problem arises in the well
known solution to the heat equation

u(x, t) =
1

2
√

πt

∫ +∞

−∞
e−(x−y)2/4tu0(y)dy (9)
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at the initial time t = 0: direct substitution of t = 0 into (9) is impossible and hence
we must pass to the limit t → 0 in order to define u(x, 0) from (9).

The simple examples (8) and (9) show that the particular approach in [2] is funda-
mentally different to that in [1]. In [1] we study the Smoluchowski equation from the
mathematical point of view, the value at zero being considered as the limit as m → 0,
all the results being mathematically rigorous.

The above discussion demonstrates that the model (5), (6) leads us away from a
physical explanation of the mathematical phenomenon discovered in [1]. As an attempt
to explain the phenomenon let us consider the bounded coagulation kernel (3) with
the stationary solution (4). We can see that this stationary state is achieved due to a
constant influx of small particles. The number of small particles is infinite and, moreover,
is large enough to ensure the influx of small particles for all t > 0. The phenomenon of
existence of stationary solutions of the pure coagulation equation therefore takes place
due to the influence of a sufficiently large ”infinity” of small particles. In conclusion,
we would like to add that the above mentioned phenomenon of the infringement of the
mass conservation law for K(m,m1) = mm1 is due to a different type of influence of
infinity.
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