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Abstract

We prove the global existence and uniqueness theorem to the space
nonhomogeneous Smoluchovsky coagulation equation for unbounded
coagulation kernels with multiplicative growth on infinity . These ker-
nels include almost all physically reasonable cases. Initial data are
supposed to be sufficiently small.

We examine the asymptotic properties of the general coagulation equa-
tion which for space inhomogeneous case can be written as

∂c(x, z, t)
∂t

+ divz(v(x, z)c(x, z, t)) =

=
1
2

∫ x

0
K(x− y, y)c(x− y, z, t)c(y, z, t)dy −

−c(x, z, t)
∫ ∞

0
K(x, y)c(y, z, t)dy, (1)

c(x, z, 0) = c0(x, z) ≥ 0. (2)

It describes the time evolution of particles in disperse systems with distribu-
tion function c(x, z, t) ≥ 0 of mass x ≥ 0 at time t ≥ 0 at space point z ∈ R3

whose change in mass governed by the non-negative reaction rate K which
is called the coagulation kernel. The coagulation kernel K models the rate
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at which particles of mass x coalesce with those of mass y. Applications of
(1) can be found in many problems including chemistry (e.g. reacting poly-
mers), physics (aggregation of colloidal particles, growth of gas bubbles in
solids), astrophysics (formation of stars and planets), meteorology (merging
of drops in atmospheric clouds).
This spatially inhomogeneous equation was studied, e.g., in [1, 2] for bounded
kernels K, in [3] for unbounded coagulation kernels of special type. In this
note we are concerned with kernels K(x, y) ≤ k(1 + x)(1 + y) which include
the main part of physically reasonable cases.

We assume that there exists δ > 0 such that

divz v(x, z) ≥ δ, x ∈ [0,∞), z ∈ R3. (3)

This condition holds, e.g., for particles moving in gravitation field. Partic-
ularly, for a particle with mass x and zero initial velocity, falling on a star
with mass X from a distance z0, we have

inf
z

∂v(x, z)
∂z

=
16
√

3
9
√

2
(γX)

1
2 z−3/2

0

where γ is the gravitational constant.
We introduce the space Ωλ of continuous functions with a bounded norm

‖c‖λ = sup
0≤t<∞

∫ ∞

0
exp(λx) sup

z∈R3
|c(x, z, t)|dx.

We shall use the following notations:

Ω =
⋃

λ>0

Ωλ, Ω+ = {c : c ≥ 0, c ∈ Ω} .

In this paper we prove the following theorem.

Theorem 1 Let nonnegative continuous coagulation kernel K satisfies the
inequality

K(x, y) ≤ k(1 + x)(1 + y), (x, y) ∈ R2
+, k = const. (4)

Let v ∈ C1 and (3) holds. Suppose c0 ∈ Ω+ and

c0(x, z) ≤ A exp(−ax), x ∈ R1
+, z ∈ R3, a > 0. (5)
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Then there exist positive constants A and a such that the problem (1), (2)
has global in time solution c ∈ Ω+. This solution is unique in class Ω if the
following additional condition provided:

divz v ≤ ∆ = const, x ∈ [0,∞), z ∈ R3.

Lemma 1 Let conditions of Theorem hold and the coagulation kernel has a
compact support. Then there exists at least one solution to the problem (1),
(2) in class Ω+.

Local existence is proved using the contraction mapping theorem. Nonnega-
tiveness of solution has been proved for more general case in lemma 2 in [5].
Extension of solution for all t > 0 bases on apriori estimation of boundedness
on each compact, which was established in [6].

Lemma 2 Let conditions of Theorem hold. Then there exist positive con-
stants λ, C0 such that any continuous nonnegative solution to (1),(2) obeys
the inequality

c(x, z, t) ≤ C0(1 + x)−1 exp(−λx) exp(−δt). (6)

Proof. We use the substitution

c(x, z, t) = g(x, z, τ) exp(−δt)(1 + x)−1, τ = 1− exp(−δt), τ ∈ [0, 1). (7)

Then from (1),(2) we obtain

δ
∂g
∂τ

+ (1− τ)−1(v(x, z),∇zg) =

1
2
(1 + x)

∫ x

0

K(x− y, y)
(1 + x− y)(1 + y)

g(x− y)g(y)dy

−g(x)
∫ ∞

0

K(x, y)
1 + y

g(y)dy − [div v − δ](1− τ)−1g(x), (8)

g|τ=0 = (1 + x)c0(x, z) = g0(x, z). (9)

We write (8), (9) in the integral form and take supz∈R3 . Then we have
supz∈R3 g(x, z, t) ≤ f(x, t) where f is the right-hand side of the inequality
obtained. Finally, we establish with (3),(4),(5) taken into account, that the
majorant nonnegative function f satisfies the following inequality

δ
∂f
∂τ

≤ 1
2
k(1 + x)f ∗ f(x), (10)
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f |τ=0 = f0(x) < A(1 + x) exp(−ax) ≤ Aε exp(−(a− ε)x) (11)

where f ∗ f means the convolution: f ∗ f(x) =
∫ x
0 f(x− y)f(y)dy and

Aε = ε−1 exp(ε− 1), 0 < ε < min{a, 1}. (12)

For x ≤ 1 we have
∂f
∂τ

≤ kδ−1 f ∗ f, (13)

f0(x) < 2A exp(−ax). (14)

Changing the inequalities (13),(14) to equalities and solving the equation
obtained, we can see that

f(x, τ)|x≤1 ≤ 2a exp((2δ−1Akτ − a)x).

Consequently, if 0 ≤ x, τ ≤ 1, then

f(x, τ) ≤ Â =

{

2A, A ≤ aδ/(2k),
2A exp(2Akδ−1 − a), A > aδ/(2k).

(15)

We are in position now to prove that f < h if the ”upper” function h satisfies
the following equation:

∂h
∂τ

= kδ−1xh ∗ h(x), (16)

h|τ=0 = h0(x) = C0 exp(−(a− ε)x) (17)

where
C0 > max{Aε, Â exp(a− ε)}. (18)

Expressions (10), (15), (17), (18) ensure

h0(x) > f0(x), x ≥ 0 and h0(x) > f(x, τ), 0 ≤ x, τ ≤ 1. (19)

Using the Laplace transform we can solve (16),(17) and obtain

h(x, τ) =
∞
∑

n=1

(

4kx2τδ−1
)n−1

Cn
0

(2n− 3)!!
n!(2n− 2)!

exp(−(a− ε)x) (20)

with (2n − 3)!! = 1 · 3 · 5 · ... · (2n − 3), (−1)!! = 1. Using the equality
(2n)!! = 2nn!, we establish the inequality

h(x, τ) ≤ C0cosh
(
√

8kC0δ−1x
)

exp(−(a− ε)x), τ ∈ [0, 1), x ≥ 0. (21)
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¿From (20) we see that the function h is continuous and increases in τ .
Consequently, h(x, τ) > f(x, τ) for 0 ≤ x, τ < 1. To demonstrate f < h
we assume that there is a set D of points (x, τ) on which f(x, τ) = h(x, τ).
It is worth to note that (19) yields x > 1, τ > 0 if (x, τ) ∈ D. We choose
(x0, τ0) ∈ D so that the rectangle Q = [0, x0)× [0, τ0) contains no points of
D. As far h and f are continuous, we have f(x, τ) < h(x, τ) for (x, τ) ∈ Q.
Hence

f(x0, τ0) = h(x0, τ0) = h0(x0) + kx0δ−1
∫ τ0

0
h ∗ h(x0, s)ds >

> f0(x0) +
1
2
kδ−1(1 + x0)

∫ τ0

0
f ∗ f(x0, s)ds ≥ f(x0, τ0).

We arrive at the contradiction f(x0, τ0) > f(x0, τ0), which proves that D is
empty and f(x, τ) < h(x, τ), x ≥ 0, 0 ≤ τ < 1. ¿From (21) we see that if we
impose the condition

√

8kC0δ−1 < a (22)

then the assertion of lemma 2 holds with λ = a− ε−
√

8kC0δ−1 > 0.
Proof of the Theorem. We construct the sequence of continuous sym-
metric nonnegative kernels {Kn}, n ≥ 1 with compact supports such that
Kn(x, y) = K(x, y) if x, y ≤ n. In accordance with assertion of Lemma 1
this sequence borns the sequence cn ∈ Ω+ of nonnegative solutions of (1),(2).
Due to (7), (21) we have the important estimation

cn(x, z, t) <
C0

1 + x
exp

(

(
√

8kC0δ−1 − a + ε)x− δt
)

. (23)

Using approach from [6], we show that the sequence {cn} is relatively com-
pact in space of continious functions with the topology of uniform conver-
gence on each compact. By standard diagonal process we build a continuous
nonnegative function c such that cn → c on each compact. Passing to the
limit is possible due to the estimation (23) which ensures uniform smallness
of integral ”tails”

∫∞
m (1 + x)cn(x, z, t)dx. Therefore the limit function c is

a solution to (1), (2). This completes the proof of existence. Uniqueness is
proved analogiously to [6]. The Theorem is proved.
Remarks.
1. The suitable constants A and a in (5) can be found from (12), (15), (17),
(22).
2. From (6) we see that solution goes to zero as t →∞.
3. The assertion of Theorem holds if the disperse system concerned has
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effluence or absorption which correspond to adding the term δc(x) to the
left-hand side of equation (1).
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