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Abstract

For a linear coagulation kernel and a constant fragmentation kernel we
prove the existence of equilibrium solutions and examine asymptotic
properties for time-dependent solutions which are proved to converge
to the equilibria. The rate of the convergence is estimated. It is shown
also that all time-dependent solutions with the same density can tend
to only one particular steady-state solution. In this sense the equilib-
rium solution is proved to be unique. Existence, uniqueness and mass
conservation of time-dependent solutions has been proved in a previous
paper by the authors [10].

1 Introduction

We examine the asymptotic properties of the general coagulation-fragmentation
equation which can be written as

∂
∂t

c(x, t) =
1
2

∫ x

0
K(x− y, y)c(x− y, t)c(y, t)dy

−c(x, t)
∫ ∞

0
K(x, y)c(y, t)dy − 1

2
c(x, t)

∫ x

0
F (x− y, y)dy
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+
∫ ∞

0
F (x, y)c(x + y, t)dy, (1.1)

c(x, 0) = c0(x) ≥ 0. (1.2)

Equation (1.1) describes the distribution function of particles c(x, t) ≥ 0
of mass x ≥ 0 at time t ≥ 0 whose change in mass is governed by the
non-negative reaction rates K and F which are called, respectively, the
coagulation and fragmentation kernels. This paper is a natural continuation
of our paper [10]

Carr [6] demonstrated existence of a discrete equilibrium solution and
convergence of the time-dependent solution to equilibrium provided that the
detailed balance condition for coagulation and fragmentation kernels holds.
Mathematically this condition means

K(x, y)Q(x)Q(y) = F (x, y)Q(x + y) (1.3)

for a positive function Q(x) and immediately gives us the equilibrium solu-
tion c̄(x) = exp(λx)Q(x) in which case there is no necessity to prove its
existence. The detailed balance condition leads to the separate cancellation
of each pair

1
2

∫ x

0
K(x− y, y)c̄(x− y)c̄(y)dy − 1

2
c̄(x)

∫ x

0
F (x− y, y)dy = 0

and
∫ ∞

0
F (x, y)c̄(x + y)dy − c̄(x)

∫ ∞

0
K(x, y)c̄(y)dy = 0.

We do not have this effective cancellation in our work presented below since
we do not assume the detailed balance condition. In such circumstances the
existence of an equiluilibrium solution is not clear and we therefore remedy
this situation in this paper where we discuss the existence and uniqueness
of an equilibrium solution. We should observe also that an essential math-
ematical difference between discrete and continuous models of coagulation-
fragmentation consists in the fact that the space l1 is contained in l∞ for the
discrete case which is not true in the continuous case. Therefore the con-
tinuous version (which we treat in this paper) ought to include additional
estimates.

Convergence in time of solutions to equilibrium has been studied for the
Becker-Döring equations in [2, 3, 13, 14]. These equations coincide with
(1.1) in its discrete form when only the interactions of particles with masses
1 and k are permitted.
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For the case K = a, F = b with a, b constants the convergence to equi-
librium of solutions has been studied via a Lyapunov function by Aizenman
and Bak [1] and by the authors [15]. With the aid of Laplace transforms
Barrow [4] has considered the large time evolution of solutions for this case,
but has not discussed the stability of the resulting equilibria. Equilibrium
solutions of the form exp(−λx) have arisen in both of the above references
and are also known to be special cases of more general possible equilibrium
solutions [9]. The case of nonexistence of an equilibrium solution was treated
by Dubovskǐı [7]. The asymptotic properties of coagulation models have also
been considered by Bruno et al [5] and Gajewski [12].

It is our aim to prove existence and uniqueness theorems for equilibrium
solutions and examine equilibria which are related to the initial data in
the time-dependent problem. We investigate the large time behaviour of
solutions near equilibrium for the case K = a + k(x + y), F = b, where a, b
and k are non-negative constants. It is worth pointing out that for this case
the hypotheses (H2) and (H4) of [6] do not hold and we therefore utilize a
completely different method. The proof of existence of equilibrium in our
case is not trivial and is based on three steps. First, we demonstrate that
there exists a continuous and positive function which satisfies a special form
of (1.1). Second, we prove that time-dependent solutions of (1.1) converge
to the function in step one (which at this point is a possible candidate for
the equilibrium solution) as time goes to infinity. Third, using properties
of time-dependent solutions (which are proved in the second section of this
paper) we prove integrability of the function derived in step one and hence
establish that it really is the equilibrium solution to (1.1). The existence
of equilibrium is also not trivial from the physical point of view. If we
apply the above mentioned detailed balance condition (1.3) for K(x, y) ≡
1, Q(x) = exp(x2) then we obtain F (x, y) = exp(−2xy) and c̄(x) =
exp(x2 + λx). This function is not integrable on [0,∞) and, consequently,
a time-dependent solution of (1.1), (1.2) with bounded mass (expressed by
its first moment) cannot converge to such an equilibrium since its total mass
must remain constant in accordance with the results of [10].

2 Existence and uniqueness of an equilibrium so-
lution

We are concerned with kernels of the form

K(x, y) = a + k(x + y) + g xy, F = b (2.1)
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with non-negative constants a, b, k, g. An equilibrium solution c̄(x) to
(1.1) has to satisfy the following equation

1
2

∫ x

0
K(x− y, y)c̄(x− y)c̄(y)dy − c̄(x)

∫ ∞

0
K(x, y)c̄(y)dy

−1
2
c̄(x)

∫ x

0
F (x− y, y)dy +

∫ ∞

0
F (x, y)c̄(x + y)dy = 0. (2.2)

Let
N =

∫ ∞

0
c̄(x)dx,M =

∫ ∞

0
xc̄(x)dx.

Then, integrating (2.2) and taking into account (2.1), we obtain

a
2
N2 + kNM + (gM − b)

M
2

= 0. (2.3)

Therefore
N =

1
a

√

(k2 − ag)M2 + abM − kM
a

.

From (2.3) we conclude that nonzero non-negative equilibrium solutions
cannot exist if M > b/g. If a = k = 0 then M = b/g. If g = 0 then an
equilibrium solution may be exists for any M > 0. Denoting the convolution
operator by ∗ and using (2.1) we may rewrite (2.2) in the form

c̄(x) =
(

a
2
c̄ ∗ c̄(x) +

kx
2

c̄ ∗ c̄(x) +
g
2
(xc̄) ∗ (xc̄)(x) + bN − c̄ ∗ b(x)

)

· 1
aN + kM + x(b/2 + kN + gM)

. (2.4)

Our aim is to show that c̄ as a solution to (2.4) is an equilibrium solution
to (1.1). This will be proved at the end of section 4. If we denote the
right-hand side of (2.4) as A(c̄) , we obtain

|Ac̄1 −Ac̄2| ≤
1

aN + kM
(
a
2
|c̄1 − c̄2| ∗ |c̄1 + c̄2|+

kx
2
|c̄1 − c̄2| ∗ |c̄1 + c̄2|

+
g
2
|xc̄1 − xc̄2| ∗ |xc̄1 + xc̄2|+ |c̄1 − c̄2| ∗ b).

Let us consider the operator A as a mapping of the Banach space C[0, α]
onto itself. Then we obtain

‖Ac̄1 −Ac̄2‖ ≤ ‖c̄1 − c̄2‖
α

aN + kM

[

1
2

(

a + αk + α2g
)

‖c̄1 + c̄2‖+ b
]

.
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Hence, the operator A is contractive if

‖c̄‖ <
aN + kM − αb
α(a + αk + α2g)

def= Rα.

To use the contraction mapping theorem [11] we have to check if the ball
B(Rα) is invariant. We obtain

‖Ac̄‖ ≤ 1
2(aN + kM)

[

(αa + α2k + α3g)‖c̄‖2 + 2bN + 2αb‖c̄‖
]

.

By solving the inequality ‖Ac̄‖ ≤ ‖c̄‖ we may see that the ball B(Rα)
remains invariant if

‖c̄‖ ≤ aN + kM − αb +
√

(aN + kM − αb)2 − 2αbN(a + αk + α2g)
α(a + αk + α2g)

(2.5)

whence we obtain that the square root expression should be non-negative.
This condition with Rα > 0 allows us to find a suitable value of α. Now we
are in a position to prove the following lemma:

Lemma 2.1 Let α satisfy the condition Rα > 0 and be such that the
square root in (2.5) is non-negative. Then there exists a unique solution
to (2.4) on the interval [0, α] which is continuous and belongs to the ball
B(Rα).

Proof. Existence and uniqueness of a continuous solution c̄ in the ball
B(Rα) follows from the contraction mapping theorem. We now prove unique-
ness for all solutions (not necessarily inside B(Rα) ). Suppose that there
exists another solution ē to (2.4). Its continuity follows from its integrability
and we remark that the operator A maps any integrable function to a con-
tinuous one. Let us consider the restriction of ē to an interval [0, ε], ε < α.
Choosing ε small enough we find that the ball B(Rε) contains two solutions
c̄ and ē. (Actually, Rε tends to infinity as ε → 0.) This result contradicts
the uniqueness in this ball. This proves Lemma 2.1.

Our next step is to extend the solution obtained to the interval [0,∞).

Lemma 2.2 There exists a unique continuous solution to (2.4) for all x ≥ 0.

Proof. Let us consider the operator A as a mapping A : C[α, 2α] →
C[α, 2α] and denote by d(x) a solution of (2.4) on [α, 2α]. The function d(x)
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obeys the equality

d(x) =
1

aN + kM + x(b/2 + kN + gM)

[

(a + kx)
∫ x

α
d(y)c̄(x− y)dy

+
a + kx

2

∫ α

x−α
c̄(x− y)c̄(y)dy + g

∫ x

α
y(x− y)d(y)c̄(x− y)dy

+
g
2

∫ α

x−α
y(x− y)c̄(x− y)c̄(y)dy +b

(

N −
∫ α

0
c̄(x)dx−

∫ x

α
d(y)dy

)]

. (2.6)

Here the function c̄ is the solution to (2.4) on [0, α]. Its existence and
uniqueness were proved in Lemma 2.1. By standard results on integral
equations, the linear Volterra equation (2.6) has a unique continuous solution
d(x) on the interval [α, 2α]. Put c̄(x) = d(x) if α < x ≤ 2α. Obviously,
c̄ satisfies (2.4) for all x ∈ [0, 2α]. Its continuity follows from the proof
of Lemma 2.1. Now we can analogously extend the solution obtained to
[2α, 4α] and so on. From uniqueness on [α, 2α] it follows also that the
solution constructed has no branch points, otherwise we can choose b on a
branch point. This completes the proof of Lemma 2.2.

Remark 2.1 It follows from the proof of Lemma 2.1 that the function c̄ is
infinitely many times differentiable.

Remark 2.2 The integrability and positivity of c̄ are not proved yet. These
properties will be discussed later. It is worth pointing out the importance of
the non-zero term bN in the numerator of the right-hand side of (2.4). If
we had replaced bN with b

∫∞
0 c̄(x)dx then the contractions Ac̄ would tend

to the trivial zero steady solution and we would not obtain the nontrivial
solution by this approach. If b = 0 then by our uniqueness result only the
zero continuous equilibrium solution is possible. It is also worth pointing
out that the continuity condition is essential, because there are examples of
nonzero discontinuous steady solutions for the pure coagulation equation [9].

3 Strong Linear Stability

Equilibrium solutions to (2.4) are denoted by c̄(x). Let us assume that
g = 0, that is we further consider kernels of the form

K(x, y) = a + k(x + y), F = b. (3.1)

In this case there is no prohibition for equilibria for any M > 0, as is pointed
out in section 2. In accordance with Theorem 1 from [10] the initial value
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problem (1.1),(1.2) has a mass conserving non-negative solution c(x, t) if
the initial function c0 is continuous and has bounded moments. Therefore
c(x, t) can converge as t → ∞ to the equilibrium with the same total mass
M :

∫ ∞

0
xc0(x)dx =

∫ ∞

0
xc̄(x)dx = M. (3.2)

This reason forces us to consider the case g = 0, otherwise we cannot warrant
the mass conservation law. Below we use the simplified notation N(t) instead
N0(t). Let us show that

N(t) → N as t →∞. (3.3)

The integration (1.1) yields

dN(t)
dt

= −a
2
N2(t)− kMN(t) +

b
2
M. (3.4)

By using (2.3) and solving (3.4) we obtain

|N(t)− z1| · |N(t)− z2| = |N(0)− z1| · |N(0)− z2| exp(−1
2
at)

where the constants z1, z2 are the roots of the quadratic equation

1
2
az2 + kMz − 1

2
bM = 0.

Hence, we obtain (3.3). We additionally see that if N(0) satisfies (2.3) then
N(t) = N for all t ≥ 0. The value of M in (2.3) is defined by the initial
distribution c0 in (3.2).
To examine the general convergence of the solution c(x, t) to c̄(x) where c̄ is
the solution of (2.4), the function f = c− c̄ is introduced. The substitution
of f(x, t) into (1.1) using (2.4),(3.1),(3.2) gives us

∂f
∂t

= (a + kx)(
1
2
f ∗ f + f ∗ c̄− fN(t))

−kfM − 1
2
bfx− b ∗ f + (b− ac̄− kxc̄)(N(t)−N) (3.5)

with f(x, 0) = f0(x) = c0(x) − c̄(x). Our main aim now is to show that
f(x, t) → 0 as t →∞.
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If we consider u(x, t) to be a linear perturbation of f(x, t) then (3.5) can be
linearised giving

ut = (a + kx)u ∗ c̄− auN(t)− kxuN − kuM − 1
2
bxu− b ∗ u, (3.6)

u(x, 0) = u0(x).

Taking the Laplace transform of (3.6) we come to the partial differential
equation for the Laplace transform U(p, t) of u(x, t):

Ut + (kC̄ − kN − 1
2
b)Up = (aC̄ − kC̄p −

b
p
− aN(t)− kM)U. (3.7)

By the substitution

U = exp(−a
∫ t

0
N(s)ds− kMt)W (3.8)

we obtain from (3.7)

Wt + (kC̄ − kN − 1
2
b)Wp = (aC̄ − kC̄p −

b
p
)W. (3.9)

The characteristic equation for (3.9) is of the form

dt =
dp

kC̄(p)− kN − b/2
=

dW
(aC̄(p)− kC̄(p)− b/p)W

. (3.10)

By solving (3.10) and denoting for a fixed p0 ≥ 0

I(p) =
∫ p

p0

dq
kC̄(q)− kN − b/2

,

we obtain, with (3.8) taken into account,

U(p, t) = exp(−a
∫ t

0
N(s)ds− kMt)U0(i(p, t))

· exp

(

∫ i(p,t)

p

aC̄(q)− kC̄p(q)− b/q
kN + b/2− kC̄(q)

dq

)

(3.11)

where
i(p, t) = I−1(I(p) + t).

Here I−1 is the inverse function of I. The existence of I−1 is warranted
by the increasing monotonicity of the function I. For any fixed t > 0 the
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integral
∫ i(p,t)
p in (3.11) decreases in p for all p > p0 due to the decreasing

of C̄ and −C̄p. Increasing of both functions I and I−1 means that the
decreasing of U0(i(p, t)) in p is not less than the decreasing of U0(p) because
i(p, t) ≥ p. Therefore there exists an inverse Laplace transform u(x, t) of
the right-hand side in (3.11) which is the solution of (3.6) and we have for
a positive constant G the following estimate:

‖u(., t)‖C ≤ G exp
(

−a
∫ t

0
N(s)ds− kMt

)

‖u0‖C (3.12)

where norms are from the space C[0, B] for any fixed 0 < B < ∞. The con-
stant G depends on B but does not depend on t. Hence u(x, t) → 0 strongly
in C[0, B] as t → ∞, that is, the equilibrium solution c̄ is (exponentially)
strongly asymptotically stable in C[0, B].

Remark 3.1 We need to consider B < ∞ because we do not know at this
point whether the function c̄ belongs to the space L1[0,∞) or L∞[0,∞). We
prove these important properties of c̄ in the next section.

Example. For the simple case k = 0, a = b = 1 with C̄(p) = (p + λ)−1 we
find

I(p) = 2(p− p0), i(p, t) = p + t/2

and (3.11) is replaced by

U(p, t) = U0(p + t/2) exp(−t/λ)
p2(p + t/2 + λ)2

(p + t/2)2(p + λ)2
.

The inverse Laplace transform gives us

u(x, t) = exp(−1
2
xt− t/λ)u0(x)− λt exp(−1

2
xt− t/λ)

×
[

u0(x) ∗ (A(t) + xB(t)) exp(−λx) + u0(x) ∗ (B(t)−A(t)) exp(−1
2
xt)

]

where
A(t) = (t/2− λ)−1 +

1
2
λt(t/2− λ)−3,

B(t) = −1
4
λt(λ− t/2)−2

provided t 6= 2λ. If t = 2λ then we obtain

u(x, 2λ) = exp(−λx)
[

u0(x)− 2λ2u0(x) ∗ (x exp(−λx))

+
1
6
λ4u0(x) ∗ (x3 exp(−λx))

]

.

For this example the estimate (3.12) is more descriptive.
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4 Nonlinear Estimates for Solutions

We are now ready to exlpoit the estimate (3.12). Let us denote u(x, t) =
Ttu0(x) where u(x, t) is the solution of equation (3.6) and Tt is the result-
ing semigroup operator. From the inequality (3.6) we obtain for the usual
semigroup norm

‖Tt‖ = sup
‖u0‖C≤1

‖Ttu0‖C ≤ G exp(−a
∫ t

0
N(s)ds− kMt) ≤ G exp(−νt),(4.1)

0 < ν ≤ kM + a inf
t>0

t−1
∫ t

0
N(s)ds = kM + amin{N(0), N}.(4.2)

The nonlinear initial value problem (3.5) can now be written in integral form
(similar to the case in [8]) as

f(x, t) = Ttf0 +
∫ t

0
Tt−s

[

1
2
(a + kx)f ∗ f(., s)

+(b− ac̄− kxc̄− kxf(., s))(N(s)−N)] ds. (4.3)

We now introduce the norm

‖f‖ν = sup
t≥0

exp(νt)‖f(., t)‖C . (4.4)

If the right-hand side of the equation (4.3) is denoted by D(f(., t)) then
clearly for any fixed t ≥ 0 D maps C[0, B] into itself. Expressions (4.1) and
(4.3) yield

‖D(f(., t))‖C ≤ G exp(−νt)(‖f0‖C +
∫ t

0
exp(νs)(

1
2
(a + kB)B‖f(., s)‖2

C

+ sup
x∈[0,B]

|b− ac̄− kxc̄| · |N(s)−N |+ kx‖f(., s)‖C |N(s)−N |)ds).(4.5)

Multiplying (4.5) by exp(νt) we establish the correlation

‖D(f)‖ν ≤ G‖f0‖C +
GB
2ν

(a + kB)‖f‖2
ν + Ga1 + a2‖f‖ν . (4.6)

where
a1 = sup

x∈[0,B]
|b− ac̄− kxc̄|

∫ ∞

0
exp(νs)|N(s)−N |ds

and
a2 = GkB

∫ ∞

0
|N(s)−N |ds.
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From (4.5) it is possible to reveal that if

‖f0‖C + a1 ≤
ν(1− a2)2

2G2B(a + kB)
(4.7)

and
a2 < 1 (4.8)

then the mapping D has an invariant ball in C[0, B] with radius η satisfying
η1 ≤ η ≤ η2 where η1 and η2 are the real positive roots of the quadratic
equation

GB
2ν

(a + kB)z2 − (1− a2)z + G(‖f0‖C + a1) = 0. (4.9)

In fact, if ‖f‖ν ≤ η for some η ∈ [η1, η2], then from (4.6) we obtain

‖D(f)‖ν ≤ G‖f0‖C +
GB
2ν

(α + δB)η2 + Ga1 + a2η ≤ η (4.10)

which follows from the facts that η1 ≤ η2 and the conditions (4.6)-(4.8) hold.
We now try to find conditions for D to be a contraction in C[0, B]. For any
f1 and f2 it follows from (4.1) and (4.3) that

‖D(f1)−D(f2)‖C ≤
1
2
G(a + kB)

∫ t

0
exp(−ν(t− s))‖(f1 − f2) ∗ (f1 + f2)‖Cds

+kGB
∫ t

0
exp(−ν(t− s))|N(s)−N |‖f1 − f2‖Cds

≤ BG
2ν

(a + kB) exp(−νt)‖f1 − f2‖ν(‖f1‖ν + ‖f2‖ν)

+a2 exp(−νt)‖f1 − f2‖ν . (4.11)

If the functions f1 and f2 belong to a ball with radius η, that is, ‖f1‖ν ≤ η
and ‖f2‖ν ≤ η, then from (4.10) we obtain

‖D(f1)−D(f2)‖ν ≤
(

BGη
ν

(a + kB) + a2

)

· ‖f1 − f2‖ν . (4.12)

Thus the mapping D is a contraction mapping in the ball with radius

η <
(1− a2)ν

BG(a + kB)
def
= η0.
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From equation (4.9) η1 and η2 are given by

η1,2 =
(1− a2)ν

BG(a + kB)
·
(

1±
√

1− 2G2B(α + δB)(‖f0‖C + a1)
ν(1− a2)2

)

and hence the bound of contraction belongs to the closed interval [η1, η2].
From standard arguments using (4.9),(4.11) and the contraction mapping
theorem (e.g.[11]) we see that there exists a solution of the initial value
problem (3.5) which is unique in the ball of radius ‖f‖ν ≤ η0 and belongs
to the ball of radius ‖f‖ν ≤ η1 < η0. Moreover, this solution tends to zero
not slower than exp(−νt).

From the non-negativity of c(x, t) as a solution to (1.1),(1.2) and its
trend to c̄(x) we can easily see that the function c̄ is non-negative. Using
the mass conservation law and the non-negativity of the functions c̄ and
c(x, t) we now see that c̄ is integrable with weight x on all [0,∞) and that
its first moment is not more tham M. By integrating (2.4) directly, we find
that

∫ ∞

0
c̄(x)dx = N

otherwise the right-hand side of (2.4) cannot be integrated. Taking (2.3)
into account we also obtain that

∫ ∞

0
xc̄(x)dx = M. (4.13)

Therefore the function c̄ is indeed the solution to (2.2) with the kernels (3.1).
Applying Remark 2.1 we come to the following theorem.

Theorem 1 Let the kernels K and F satisfy (3.1). Then for each
M ≥ 0 there exists a unique non-negative equilibrium solution to (1.1) such
that (4.13) holds. This solution is infinitely many times differentiable.

We can now prove the following theorem:

Theorem 2 Let the conditions of Theorem 1 from [10] hold and kernels K
and F satisfy (3.1). Suppose

∫ ∞

0
xc0(x)dx = M.

Then any time-dependent solution (the existence of which has been proved
in [10]) tends to the equilibrium solution c̄(x) which satisfies the equality
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(4.13) provided that the estimates (4.7) and (4.8) hold. The convergence
takes place in C[0, B] for any 0 < B < ∞ and in L1[0,∞) as t → ∞.
The rate of the convergence is proportional to exp(−νt) where ν is defined
in (4.2).

Remark 4.1 The estimates (4.7) and (4.8) mean smallness of the differ-
ence between the initial function and the equilibrium.

Proof of Theorem 2. Convergence in C[0, B] was proved above. To prove
convergence in L1[0,∞) it suffices to note that ”tails” of the integral of c(x, t)
are bounded uniformly in t due to mass conservation of time-dependent
solutions [10]. Namely, we have

∫ ∞

B
c(x, t)dx ≤ 1

B

∫ ∞

0
xc(x, t)dx =

1
B

const. (4.14)

Hence, employing (4.13), (4.14) we obtain

∫ ∞

0
|c(x, t)− c̄(x)|dx ≤

∫ B

0
|c(x, t)− c̄(x)|dx +

1
B

const.

By increasing the constant B we obtain the desired result, which completes
the proof of Theorem 2.
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