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Abstract

We prove global existence and uniqueness to the initial value problem
for the coagulation-fragmentation equation for an unbounded coagula-
tion kernel with possible linear growth at infinity and a fragmentation
kernel from a very large class of unbounded functions. We show that
the solutions satisfy the mass conservation law.

1 Introduction

We examine the general coagulation-fragmentation equation which can be
written as

∂
∂t

c(x, t) =
1
2

∫ x

0
K(x− y, y)c(x− y, t)c(y, t)dy

−c(x, t)
∫ ∞

0
K(x, y)c(y, t)dy − 1

2
c(x, t)

∫ x

0
F (x− y, y)dy

+
∫ ∞

0
F (x, y)c(x + y, t)dy, (1.1)

c(x, 0) = c0(x) ≥ 0. (1.2)
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Equation (1.1) describes the time evolution of particles c(x, t) ≥ 0 of mass
x ≥ 0 at time t ≥ 0 whose change in mass is governed by the non-negative
reaction rates K and F which are called, respectively, the coagulation and
fragmentation kernels. These kernels are assumed to be continuous non-
negative symmetric functions and are chosen to reflect the particular process
being modelled. The coagulation kernel K models the rate at which particles
of size x coalesce with those of size y while the kernel F expresses the rate
at which particles of size (x + y) fragment into those of sizes x and y.

From the physical point of view it is clear that K and F must be sym-
metric: K(x, y) = K(y, x), F (x, y) = F (y, x) for all 0 ≤ x, y < ∞. The
first and fourth integrals in (1.1) describe the growth of the number of par-
ticles of size x due to coagulation and fragmentation respectively, while the
second and third integrals describe the reverse of these processes. From
physical considerations all the functions in (1.1) have to be non-negative.
A brief physical interpretation of the integrals appearing on the right hand
side of equation (1.1) can be found in Drake [4], Melzak [16] or Stewart [19].
Applications of (1.1) can be found in many problems including chemistry
(e.g. reacting polymers), physics (aggregation of colloidal particles, growth
of gas bubbles in solids), astrophysics (formation of stars and planets) and
meteorology (merging of drops in atmospheric clouds).

Equation (1.1) is similar to the Boltzmann equation of gas kinetics but
unlike the Boltzmann equation the problem concerned here obeys in general
only the mass conservation law which is expressed by the first moment

∫ ∞

0
xc(x, t)dx = const.

The general coagulation–fragmentation equation has no estimates such as
the energy conservation law which corresponds to the second moment

∫ ∞

0
x2c(x, t)dx = const.

In addition, if the rate of growth of the coagulation kernel is high enough,
infringement of the mass conservation law occurs. It has been proved by
McLeod [14],[15] that for the unbounded kernel K = xy, with F = 0, the
mass conservation law for solutions breaks down at a finite time when the
second moment has blow-up. Leyvraz and Tschudi [13], Ernst, Ziff and
Hendriks [8] and Galkin [10] showed that for this kernel there is a global
time solution. Recently, McLeod’s approach was reconsidered by Slemrod
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[17] with another derivation of a solution existing after the infringement of
the mass conservation law. It is known that if the solution satisfies

∫ ∞

0
x2c(x, t)dx < ∞,

then for constant coagulation and fragmentation kernels the solutions to
(1.1) are mass conserving [1]. Conditions ensuring mass conservation have
also been derived in [2, 22].

For the discrete case of equation (1.1) existence of the mass conserving
solution was proved by Ball and Carr [2] for coagulation kernels with at most
linear growth at infinity. For a subclass of coagulation and fragmentation
kernels they also succeeded to demonstrate uniqueness. We should observe
that an essential mathematical difference between discrete and continuous
models of coagulation-fragmentation consists in the fact that the space l1

is contained in l∞ for the discrete case which is not true in the continuous
case. Therefore the continuous version (which we treat in this paper) ought
to include additional estimates.

For both nonzero kernels K and F the global existence and uniqueness of
solutions to (1.1) has been investigated in [1, 2, 3, 5, 12, 16, 18, 19, 20]. For
the case K = a, F = b with a, b constants the convergence to equilibrium of
solutions has been studied via a Lyapunov function by Aizenman and Bak [1]
and by the authors [23]. It is our aim to prove existence, uniqueness and mass
conservation theorems for the initial value problem (1.1), (1.2) with K ≤
k(1+x+y) and a very large class of fragmentation kernels including bounded
ones; in this paper we use and generalize the approach of [9, 11]. In [6] we
prove the existence of an equilibrium solution for linear coagulation and
constant fragmentation kernels and demonstrate convergence to equilibrium
for any time-dependent solutions possessing initial data near the equilibrium
distribution.

2 Existence theorem

We introduce some functional spaces. Firstly, we fix a positive constant
T > 0. Let Π be the strip

Π = {(x, t) : x ∈ [0,∞), 0 ≤ t ≤ T}

and Π(X) be the rectangle

Π(X) = {(x, t) : 0 ≤ x ≤ X, 0 ≤ t ≤ T} .
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We denote by Ωλ(T ) and Ω0,r(T ) the spaces of continuous functions f with
bounded norms

‖f‖λ = sup
0≤t≤T

∫ ∞

0
exp(λx)|f(x, t)|dx

and
‖f‖0,r = sup

0≤t≤T

∫ ∞

0
xr|f(x, t)|dx, r ≥ 1.

Let
Ω(T ) =

⋃

λ>0

Ωλ(T ).

It should be noted that the following inclusions take place

Ωλ1 ⊃ Ωλ2 , λ1 < λ2; Ω0
def= Ω0,0 ⊃ Ω0,1 ⊃ · · · ⊃ Ω0,r ⊃ · · · ⊃ Ω.

Ω(T ) may be equipped with the topology of the inductive limit of topologies
in Ωλ(T ). Cones of non-negative functions in Ω0,r(T ), Ωλ(T ) and Ω(T ) are
denoted Ω+

0,r(T ), Ω+
λ (T ) and Ω(T )+ respectively. In this section we prove

the following theorem.

Theorem 1 Let the functions K(x, y) and F (x, y) be continuous, non-negative
and symmetric. Suppose also that

K(x, y) ≤ k(1 + x + y), k > 0 (2.1)

and there exist positive constants m, m1 and b such that
∫ x

0
F (x− y, y)dy ≤ b(1 + xm1), F (x− y′, y) ≤ b(1 + xm), (2.2)

0 ≤ y ≤ y′ ≤ x, x ∈ [0,∞).

Let the initial data function satisfy either:
10 c0 ∈ Ω+

0,r(0), r > max{m, 1}, and r ≥ m1;
or
20 c0 ∈ Ω+(0).
Then the problem (1.1),(1.2) has, respectively, either:
10 at least one solution in Ω+

0,r(T );
or
20 a solution in Ω+(T ).
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We begin the proof of Theorem 1 with some preliminary results.

Lemma 2.1 Let the conditions of Theorem 1 hold and, in addition, suppose
the functions K(x, y) and F (x, y) have compact support. Then there exists
a solution c(x, t) to the initial value problem (1.1),(1.2) such that
10 c ∈ Ω+

0,r(T )
or
20 c ∈ Ω+(T )
respectively. This solution obeys the mass conservation law and is unique in
the class of continuous functions having bounded first moment.

Proof. Existence of a continuous non-negative solution follows from [19],
its uniqueness follows from [20]. Since the kernels K and F have a compact
support, the “tail” of the solution does not change in time and coincides
with the “tail” of c0. Hence, c(x, t) belongs to Ω+

0,r(T ) or Ω+(T ) respec-
tively. This proves Lemma 2.1.

When K and F belong to class (2.1), (2.2) we construct a sequence of
continuous kernels {Kn, Fn}∞n=1 from the class (2.1), (2.2) with compact
support for each n ≥ 1, such that

Kn(x, y) = K(x, y), 0 ≤ x, y ≤ n, n ≥ 1, (2.3)

Fn(x, y) = F (x, y), 0 ≤ x, y ≤ n, n ≥ 1, (2.4)

Kn(x, y) ≤ K(x, y), 0 ≤ x, y < ∞, n ≥ 1, (2.5)

Fn(x, y) ≤ F (x, y), 0 ≤ x, y < ∞, n ≥ 1. (2.6)

In accordance with Lemma 2.1, the sequence {Kn, Fn}∞n=1 generates on Π a
sequence {cn}∞n=1 of non-negative continuous solutions to the problem (1.1),
(1.2) with the kernels Kn, Fn. These solutions belong to Ω+

0,r(T ) or Ω+(T )
respectively.
Let us denote the r-th moment of the functions cn as

Nr,n(t) =
∫ ∞

0
xrcn(x, t)dx, r ≥ 0, n ≥ 1.

By direct integration of (1.1) with the weight x , we obtain the mass con-
servation law

N1,n(t) = N1 = const, n ≥ 1, t > 0. (2.7)

All the integrals exist due to the compact support of the kernels. Integrating
(1.1) with the weight x2 and using (2.1), we also obtain

dN2,n(t)
dt

≤ kN2
1 + 2kN1N2,n(t).
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Hence, N2,n(t) is bounded on t ∈ [0, T ] :

N2,n(t) ≤ N̄2, 0 ≤ t ≤ T, n ≥ 1. (2.8)

Similarly, step by step, we obtain the uniform boundedness of Nr,n(t) with
respect to n ≥ 1, 0 ≤ t ≤ T . The uniform boundedness of the zero moment
N0,n follows via (2.2) from the inequalities

dN0,n

dt
≤ 1

2

∫ ∞

0
cn(x, t)

∫ x

0
F (x− y, y)dydx ≤ 1

2
b(N0,n + Nm1,n)

and the condition m1 ≤ r. Consequently,

Nk,n(t) ≤ N̄k = const if t ∈ [0, T ], n ≥ 1, 0 ≤ k ≤ r. (2.9)

We are now in a position to formulate the following Lemma:

Lemma 2.2 The sequence {cn}∞n=1 is relatively compact in the uniform-
convergence topology of continuous functions on each rectangle Π(X).

Proof. Step 1. We first prove that {cn}∞n=1 is uniformly bounded on
Π(X). Since solutions cn of (1.1),(1.2) with kernels Kn, Fn are non-negative
then by virtue of (2.1),(2.4),(2.6),(2.9) we obtain for (x, t) ∈ Π(X):

cn(x, t) ≤ c̄0 +
∫ t

0

(

1
2
k(1 + X)cn ∗ cn(x, s) + b(N̄0 + N̄r)

)

ds. (2.10)

Here c̄0 = sup0≤x≤X c0(x) and f ∗ g is the convolution,

f ∗ g(x) =
∫ x

0
f(x− y)g(y)dy.

We define the ”upper” function for the integral inequality (2.10) to be

g(x, t) = g0 +
∫ t

0

(

1
2
k(1 + X)g ∗ g(x, s) + g(x, s)

)

ds, (2.11)

0 ≤ t ≤ T, 0 ≤ x < ∞,

where g0 = max{c̄0, b(N̄0 + N̄r)} = const. Taking the Laplace transform of
this relation with respect to x, we obtain

g(x, t) = g0 exp
(

1
2
g0kx(1 + X)(et − 1) + t

)

, 0 ≤ t ≤ T, 0 ≤ x < ∞.

(2.12)
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Our next aim is to prove that the inequality

cn(x, t) ≤ g(x, t) for (x, t) ∈ Π(X)

holds for each integer n ≥ 1.
We introduce the auxiliary function

gε(x, t) = g0 + ε +
∫ t

0

(

1
2
k(1 + M)gε ∗ gε(x, s) + gε(x, s)

)

ds, (2.13)

(x, t) ∈ Π, ε > 0.

Clearly cn(x, 0) < gε(x, 0) for 0 ≤ x ≤ X. We assume that, for some n ≥ 1,
there is a set D of points (x, t) ∈ Π(X) on which cn(x, t) = gε(x, t). Since
D does not contain points on the coordinate axes, we choose (x0, t0) ∈ D
so that the rectangle Q = [0, x0)× [0, t0) contains no points of D. Since gε
and cn are continuous, we have cn(x, t) < gε(x, t) for (x, t) ∈ Q. The values
of cn and gε coincide at the point (x0, t0). Hence

cn(x0, t0) = gε(x0, t0) > g0+ε+
∫ t0

0

(

1
2
k(1 + X)cn ∗ cn(x0, s) + cn(x0, s)

)

ds.

(2.14)
This is proved by using the fact that the values of the arguments of gε in
the integrand (2.13) are in Q. Combining (2.10) and (2.14) we arrive at the
contradiction cn(x0, t0) > cn(x0, t0), which proves that D is empty and

cn(x, t) < gε(x, t), (x, t) ∈ Π(X), n ≥ 1.

Using (2.12) we have the continuity of gε as a function of ε. Letting ε tend
to zero we find that actually

cn(x, t) ≤ g(x, t) for (x, t) ∈ Π(X), n ≥ 1,

and hence the sequence {cn}∞n=1 is bounded uniformly on Π(X):

0 ≤ cn(x, t) ≤ g0 exp
(

1
2
g0kX(1 + X)(eT − 1) + T

)

= M1 = const. (2.15)

Step 2. We show the equicontinuity of {cn}∞n=1 with respect to t. From
(1.1) we note that for 0 ≤ t ≤ t′ ≤ T, 0 ≤ x ≤ X,n ≥ 1 the following
inequality takes place

|cn(x, t′)− cn(x, t)| ≤
∫ t′

t

{

1
2

∫ x

0
Kn(x− y, y)cn(x− y, s)cn(y, s)dy

+cn(x, s)
∫ ∞

0
Kn(x, y)cn(y, s)dy +

∫ ∞

0
Fn(x, y)cn(x + y, s)dy

+
1
2
cn(x, s)

∫ x

0
Fn(x− y, y)dy

}

ds. (2.16)
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It follows from (2.5),(2.6) and (2.15) that the first and the fourth terms of
the integrand in (2.16) are uniformly bounded. The second and the third
terms in (2.16) are uniformly bounded by virtue of the uniform boundedness
of the sequence {cn}∞n=1 on Π(X), equations (2.3)–(2.6) and the inequalities

∫ ∞

0
Kn(x, y)cn(y, s)dy ≤ k(1 + X)N̄0 + kN1,(2.17)

∫ ∞

0
Fn(x, y)cn(x + y, s)dy =

∫ ∞

x
cn(y, s)F (y − x, x)dy ≤ b(N̄0 + N̄r)(2.18)

with 0 ≤ s ≤ T, n ≥ 1. Applying (2.17),(2.18) to (2.16), we finally obtain

sup
0≤x≤X

|cn(x, t′)− cn(x, t)| ≤ M2|t′ − t|, 0 ≤ t ≤ t′ ≤ T, n ≥ 1. (2.19)

The constant M2 is independent of n and hence {cn}∞n=1 is equicontinuous
with respect to the variable t on Π(X).

Step 3. We next establish that {cn}∞n=1 is equicontinuous with respect
to x. Let 0 ≤ x ≤ x′ ≤ X; then for each n ≥ 1 we have

|cn(x′, t)− cn(x, t)| ≤ |c0(x′)− c0(x)|

+
∫ t

0

{

1
2

∫ x′

x
Kn(x′ − y, y)cn(x′ − y, s)c(y, s)dy

+
1
2

∫ x

0
|Kn(x′ − y, y)−Kn(x− y, y)|cn(x′ − y, s)cn(y, s)dy

+
1
2

∫ x

0
Kn(x− y, y) · |cn(x′ − y, s)− cn(x− y, s)|cn(y, s)dy

+|cn(x′, s)− cn(x, s)|
∫ ∞

0
Kn(x′, y)cn(y, s)dy (2.20)

+cn(x, s)
∫ ∞

0
|Kn(x′, y)−Kn(x, y)|cn(y, s)dy (2.21)

+
∫ ∞

x′
cn(y, s)|Fn(x, y − x′)− Fn(x, y − x)|dy (2.22)

+
∫ ∞

x′
cn(y, s)|Fn(x′, y − x′)− Fn(x, y − x′)|dy (2.23)

+
1
2
|cn(x′, s)− cn(x, s)|

∫ x′

0
Fn(x′ − y, y)dy

+
1
2
cn(x, s)

∫ x′

x
Fn(x′ − y, y)dy +

∫ x′

x
cn(y, s)Fn(x, y − x)dy

+
1
2
cn(x, s)

∫ x

0
|Fn(x′ − y, y)− Fn(x− y, y)|dy

}

ds. (2.24)
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It follows from (2.3),(2.4) that the kernel sequence {Kn, Fn}∞n=1 we have
constructed is equicontinuous on each rectangle [0, X]× [0, z], z > 0.

Let us remark that if φ(x) is non-negative and measurable and ψ(x) is
positive and nondecreasing for x > 0, then

∫ ∞

z
φ(x)dx ≤ 1

ψ(z)

∫ ∞

0
φ(x)ψ(x)dx, z > 0, (2.25)

if the integrals exist and are finite.

Our aim now is to show that if the difference |x′ − x| is small enough,
then the left-hand side of (2.24) is small also. Fix an arbitrary ε > 0 and
choose δ(ε), 0 < δ(ε) < ε, such that

sup
|x′−x|<δ

|c0(x′)− c0(x)| < ε, (2.26)

sup
|x′−x|<δ

(|Kn(x′, y)−Kn(x, y)|+ |Fn(x′, y)− Fn(x, y)|) < ε, (2.27)

sup
|x′−x|<δ

|Fn(x, y − x′)− Fn(x, y − x)| < ε. (2.28)

The inequalities (2.27) and (2.28) hold uniformly with respect to n ≥ 1 and
0 ≤ y ≤ z. The rule for choosing the constant z = z(ε) is given below in
expressions (2.32), (2.34). Introduce the modulus of continuity

ωn(t) = sup
|x′−x|<δ

|cn(x′, t)− cn(x, t)|, 0 ≤ x, x′ ≤ X.

Using (2.1),(2.5),(2.6),(2.15), we can easily demonstrate the smallness of
terms in (2.24) whose integrals are over finite intervals. To show the small-
ness of the term at (2.20) we have to use the uniform boundedness of the
integral which follows from (2.1),(2.7),(2.9):

|cn(x′, s)− cn(x, s)|
∫ ∞

0
Kn(x′, y)cn(y, s)dy ≤

≤ kωn(s)((1 + X)N̄0 + N1), n ≥ 1, 0 ≤ x, x′ ≤ X.

The summands in the terms (2.21)-(2.23) are more complicated. Let us
consider (2.21). Using the partitioning

∫∞
0 =

∫ z
0 +

∫∞
z , we find that by
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(2.1), (2.9) and (2.27)
∫ ∞

0
|Kn(x′, y)−Kn(x, y)|cn(y, s)dy ≤

≤ εN̄0 + 2k(1 + X)
∫ ∞

z
cn(y, s)dy + 2k

∫ ∞

z
ycn(y, s)dy. (2.29)

Let us use (2.25) with φ(x) = cn(x), ψ(x) = x or φ(x) = xcn(x), ψ(x) =
xr−1 in the second and third terms of (2.29) respectively. Also, recall equa-
tion (2.8). Then we arrive at the expressions

∫ ∞

z
cn(y, s)dy ≤ 1

z
N1, (2.30)

∫ ∞

z
ycn(y, s)dy ≤ 1

zr−1 N̄r. (2.31)

If we choose z such that

1
z
N1 ≤ ε and

1
zr−1 N̄r ≤ ε (2.32)

then from (2.29)
∫ ∞

0
|Kn(x′, y)−Kn(x, y)|cn(y, s)dy ≤ const · ε. (2.33)

The same reasoning should be used to estimate the terms (2.22) and (2.23).
For (2.22) we obtain

∫ ∞

x′
cn(y, s)|Fn(y − x′, x)− Fn(y − x, x)|dy

≤ εN̄0 +
∫ ∞

z
cn(y, s)Fn(y − x′, x)dy +

∫ ∞

z
cn(y, s)Fn(y − x, x)dy

≤ εN̄0 + 2b
∫ ∞

z
cn(y, s)(1 + ym)dy ≤ εN̄0 + 2b

N̄1

z
+ 2b

N̄r

zr−m .

If (2.32) holds and
N̄0

zr−m < ε (2.34)

then
∫ ∞

x′
cn(y, s)|Fn(x, y − x′)− Fn(x, y − x)|dy ≤ const · ε. (2.35)
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Finally, using (2.15),(2.26),(2.27),(2.28),(2.33) and (2.35) we obtain from
the whole inequality (2.24):

ωn(t) ≤ M3 · ε + M4

∫ t

0
ωn(s)ds, 0 ≤ t ≤ T.

Here the positive constants M3 and M4 are independent of n and ε and
therefore by Gronwall’s inequality

ωn(t) ≤ M3ε exp(M4T ) def= M5 · ε. (2.36)

We conclude from (2.19) and (2.36) that

sup
|x′−x|<δ,|t′−t|<δ

|cn(x′, t′)− cn(x, t)| ≤ (M2 + M5)ε, (2.37)

0 ≤ x, x′ ≤ X, 0 ≤ t, t′ ≤ T.

The assertion of Lemma 2.2 is then a consequence of (2.15),(2.37) and
Arzela’s theorem [7]. Lemma 2.2 has now been proved.

Proof of Theorem 1: Case 10.
By means of the diagonal method we select a subsequence {ci}∞i=1 from
{cn}∞n=1 converging uniformly on each compact set in Π to a continuous non-
negative function c. Let us consider an integral

∫ z
0 xkc(x, t)dx, 0 ≤ k ≤ r.

Since for all ε > 0 there exists i ≥ 1 such that
∫ z

0
xkc(x, t)dx ≤

∫ z

0
xkci(x, t)dx + ε ≤ N̄k + ε, (2.38)

then
∫ ∞

0
xkc(x, t)dx ≤ N̄k, 0 ≤ k ≤ r (2.39)

because in (2.38) both z and ε are arbitrary. Similarly we obtain
∫ ∞

0
xc(x, t)dx ≤ N1. (2.40)

The inequality (2.40) can be transformed into an equality giving the mass
conservation law: this will be proved a below. We should show now that the
function c(x, t) is a solution to the initial value problem (1.1),(1.2). To prove
this assertion we write the equations (1.1), (1.2) in the integral form for cn
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with Kn, Fn and change cn, Kn, Fn to cn − c + c, Kn −K + K, Fn − F + F
respectively. Then we obtain

(ci − c)(x, t) + c(x, t) = c0(x)

+
∫ t

0

{

1
2

∫ x

0
(Ki −K)(x− y, y)ci(x− y, s)ci(y, s)dy

+
1
2

∫ x

0
K(x− y, y)(ci(x− y, s)− c(x− y, s))ci(y, s)dy

+
1
2

∫ x

0
K(x− y, y)(ci(y, s)− c(y, s))c(x− y, s)dy

+
1
2

∫ x

0
K(x− y, y)c(y, s)c(x− y, s)dy

−ci(x, s)
∫ ∞

0
(Ki −K)(x, y)ci(y, s)dy

−(ci − c)(x, s)
∫ ∞

0
K(x, y)ci(y, s)dy

−c(x, s)
∫ ∞

0
K(x, y)(ci − c)(y, s)dy − c(x, s)

∫ ∞

0
K(x, y)c(y, s)dy

+
∫ ∞

0
(Fi − F )(x, y)ci(x + y, s)dy +

∫ ∞

0
F (x, y)(ci − c)(x + y, s)dy

+
∫ ∞

0
F (x, y)c(x + y, s)dy − 1

2
ci(x, s)

∫ x

0
(Fi − F )(x− y, y)dy

−1
2
(ci − c)(x, s)

∫ x

0
F (x− y, y)dy

−1
2
c(x, s)

∫ x

0
F (x− y, y)dy

}

ds. (2.41)

Passing to the limit as i → ∞ in (2.41) we can see that the terms with
integrals over [0,∞) tend to zero due to the estimates for their ”tails”,
which may be obtained via (2.25) (2.39), (2.40) taking into account similar
arguments in (2.33),(2.35):

|
∫ ∞

z
(Ki −K)(x, y)ci(y, s)dy| ≤ 2k

z
(1 + x)N1 +

2k
zr−1 N̄r), (2.42)

|
∫ ∞

z
K(x, y)(ci − c)(y, s)dy| ≤ 2k

z
(1 + x)N1 +

2k
zr−1 N̄r), (2.43)

|
∫ ∞

z
(Fi − F )(x, y)ci(x + y, s)dy| ≤ 2b

z
N1 +

2b
zr−m N̄r, (2.44)

|
∫ ∞

z
F (x, y)(ci − c)(x + y, s)dy| ≤ 2b

z
N1 +

2b
zr−m N̄r. (2.45)
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Other difference terms in (2.41) can be easily shown to tend to zero. Finally,
we find that the function c is a solution of the problem (1.1), (1.2) written
in integral form:

c(x, t) = c0(x) +
∫ t

0

{

1
2

∫ x

0
K(x− y, y)c(x− y, s)c(y, s)dy−

−c(x, s)
∫ ∞

0
K(x, y)c(y, s)dy+

+
∫ ∞

0
F (x, y)c(x + y, s)dy −1

2
c(x, s)

∫ x

0
F (x− y, y)dy

}

ds. (2.46)

It follows from (2.42)–(2.45) and the continuity of c(x, t) that the right-hand
side in (1.1), evaluated at c, is a continuous function on Π. Differentiation
of (2.46) with respect to t establishes that c is a continuous differentiable
solution of (1.1),(1.2). In accordance with (2.39) it belongs to Ω0,r. This
proves case 10 of Theorem 1.
Proof of Theorem 1: Case 20.
To prove the second case of Theorem 1 it suffices to prove that, similarly
to (2.8), the functions cn belong to Ω+(T ) uniformly, that is, there exists
λ > 0 such that for all n ≥ 1, t ∈ [0, T ]

∫ ∞

0
exp(λx)cn(x, t)dx ≤ const. (2.47)

Actually, in this case the uniform convergence on each compact set to c(x, t)
implies that c ∈ Ω+

λ (T ) with the same λ. Denote

σn(λ, t) =
∫ ∞

0
(exp(λx)− 1)cn(x, t)dx.

Multiplying (1.1) by exp(λx)− 1 and taking into account the positivity of
cn(x, t), we obtain

∂σn

∂t
≤ k(

1
2
σ2

n + σn
∂
∂λ

σn − σnN1), (2.48)

σn(λ, 0) =
∫ ∞

0
(exp(λx)− 1)c0(x)dx. (2.49)

Let us consider the “upper” function σ(λ, t) which satisfies the following
equation:

∂σ
∂t

= k(
1
2
σ2 + σ

∂σ
∂λ

− σN1), (2.50)
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σ(λ, 0) def= σ0(λ) > σn(λ, 0), λ > 0; σ0(0) = σn(0, 0) = 0. (2.51)

If the problem (2.50),(2.51) has a smooth enough solution then

σn(λ, t) ≤ σ(λ, t) (2.52)

for 0 ≤ λ < λ̄, λ̄ > 0, 0 ≤ t ≤ T for some λ̄. To show this fact we use the
substitution

σn = exp(−kN1t)αn, σ = exp(−kN1t)α.

Then from (2.48) and (2.50) we have

d
dt

αn ≤
1
2
k exp(−kN1t)α2

n, (2.53)

d
dt

α =
1
2
k exp(−kN1t)α2, (2.54)

where d
dt in (2.53),(2.54) means differentiation along characteristics of (2.48),

(2.50) respectively. Let (λ̂, t̂) be the first point where σn(λ, t) = σ(λ, t),
i.e. σn(λ, t) < σ(λ, t) for 0 ≤ λ < λ̄, 0 ≤ t < t̂. Due to (2.51) we have
t̂ > 0. Also, the functions σn increase in λ. Then we obtain the following
contradiction:

α(λ̂, t̂) = α(λ(t), t) +
1
2
k

∫ t̂

t
exp(−kN1s)α2(λ(s), s)ds

> αn(λn(t), t) +
1
2
k

∫ t̂

t
exp(−kN1s)α2

n(λn(s), s)ds = αn(λ̂, t̂). (2.55)

The first and second integrations in (2.55) are along characteristics of the
equations (2.50) and (2.48) respectively. We have used the fact that λ(s) >
λn(s). The inequality (2.52) is now proved.

Our next aim is to show that there exists a solution to (2.50),(2.51),
which is bounded in a neighbourhood of zero for all 0 ≤ t ≤ T . Firstly, we
formulate for convenience the following well-known lemma which is funda-
mental to the characteristics method.

Lemma 2.3 Let the functions a(z, t, u) and f(t, u) be continuous in Rn ×
R1

+×R1 and R1
+×R1 respectively and let u(z, t) be a solution to the problem

ut(z, t) + a(z, t, u)uz(z, t) = f(t, u) (2.56)

u(z, 0) = u0(z), z ∈ Rn, t ∈ R1
+.

14



Let the function v be a solution to the simplified problem

vt(t, v0) = f(t, v) (2.57)

v(0, v0) = v0 = const.

Let z0(z, t) be the initial point on a characteristic for the problem (2.56)
which pass through the point (z, t). Then

u(z, t) = v(t, u0(z0(z, t))). (2.58)

To study (2.50),(2.51) we consider the following problem:

∂σ
∂t

= k(
1
2
σ2 + σ

∂σ
∂λ

− g(λ)σ) + ε, (2.59)

σ(λ, 0) = σ0(λ), λ ≥ 0, t ≥ 0. (2.60)

Lemma 2.4 Let σ0(λ) > 0 if λ > 0, σ0(0) = 0; g(λ) = G − δ(λ), G =
const > 0; δ(λ) → 0 as λ → 0 and σ′0(0) ≤ G. Let σ0(λ) be a holomorphic
function in a neighborhood of λ = 0. Let us fix T > 0. Then there exist
λ̂(T ) > 0 and ε̂(T ) > 0 such that the initial value problem (2.59),(2.60) has
for t ∈ [0, T ] a unique solution for 0 ≤ λ < λ̂, 0 ≤ ε < ε̂.

Proof. Firstly, let δ(λ) = 0. We consider the auxiluary problem

vt =
1
2
kv2 − kGv + ε, v|t=0 = v0

with the solution

v(t, v0) = v2 + (v1 − v2)
[

1 +
(

v1 − v2

v0 − v2
− 1

)

exp(
1
2
kt(v1 − v2))

]−1
.

Here v1 and v2 are roots of the trinomial 1
2kv2− kGv + ε. Choosing ε small

enough, we have v1 >> v2 ≥ 0 . Using Lemma 2.3, we have

σ(λ, t) = v2 + (v1 − v2)
[

1 +
(

v1 − v2

σ0(λ0)− v2
− 1

)

exp(
1
2
kt(v1 − v2))

]−1
.(2.61)

We investigate the quantity λ0. Let λ(t) be a solution of the characteristic
equation of the problem (2.59), (2.60):

dλ/dt = −kσ(λ, t).
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Using (2.61), we obtain

λ(t) = λ0 − k
∫ t

0
{v2 + (v1 − v2)

·
[

1 +
(

v1 − v2

σ0(λ0)− v2
− 1

)

exp(
1
2
ks(v1 − v2))

]−1
}ds,

whence

λ = λ0 − kv1t + 2 log
(

1 +
(

v1 − v2

σ0(λ0)− v2
− 1

)

exp(
1
2
kt(v1 − v2))

)

−2 log
(

v1 − v2

σ0(λ0)− v2

)

.

By substituting (2.61) into the last expression, we obtain the equality:

λ0 = λ + kv1t + 2 log
(

σ − v2

v1 − v2
+

(

1− σ − v2

v1 − v2

)

exp(−1
2
kt(v1 − v2))

)

. (2.62)

Using (2.61), we introduce for consideration the function

S(σ, λ, t) = σ − v2 − (v1 − v2)(σ0(λ0)− v2)

·
[

σ0(λ0)− v2 + (v1 − σ0(λ0)) exp(
1
2
kt(v1 − v2))

]−1
.

From (2.62) we can see that for small σ, v2 and λ, the value λ0 is small
for all t, 0 ≤ t ≤ T . Consequently, the function S is analytic in the polycircle

{

(λ, σ, t) : |λ| < λ̂, |σ| < σ̂, |t| < T
}

for small λ̂ and σ̂, because σ0(λ) is holomorphic in a neighborhood of λ = 0
and σ0(0) = 0. For the derivative we obtain

∂S(0, 0, t)
∂σ

= 1− 2(v1 − v2)2σ′0(λ
0
0) exp(

1
2
kt(v1 − v2))

·(1− exp(−1
2
kt(v1 − v2)))[v1 exp(−1

2
kt(v1 − v2))− v2]−1

·
[

(σ0(λ0
0)− v2)(1− exp(

1
2
kt(v1 − v2))) + (v1 − v2) exp(

1
2
kt(v1 − v2))

]−2
(2.63)
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where

λ0
0 = λ0|λ=0,σ=0 = kv1t + 2 log

(

v1

v1 − v2

(

exp(−1
2
kt(v1 − v2))− 1

)

+ 1
)

and 0 ≤ |t| ≤ T . By analysing this expression for ∂S(0,0,t)
∂σ with the conditions

of the lemma taken into account, we conlude that

∂S(0, 0, t)
∂σ

6= 0

for all |t| ≤ T . This last assertion is especially descriptive when ε = 0: in
this case we have v2 = 0 and v1 = 2G. Then

∂S(0, 0, t)
∂σ

= 1− σ′0(0)G−1(1− exp(−Gkt)) 6= 0

if all the conditions of Lemma 2.4 hold.
Using the implicit function theorem, we establish the existence of a solution
to (2.59),(2.60) which is unique and analytic in the polycircle

{

(λ, t) : |λ| < λ̂, |t| < T
}

for λ̂ small enough.
If δ(λ) 6= 0 then we can easily show (similar to obtaining the inequality
(2.52) ) that σ < σ̃ where

σ̃t = k
(

1
2
σ̃2 + σ̃σ̃λ −G1σ̃

)

+ ε,

σ̃0(λ) > σ0(λ), λ > 0, σ̃0(0) = 0

with
G1 = G− sup

0≤λ≤λ̂
δ(λ).

Then, by repeating the above arguments, Lemma 2.4 can similarly be proved.

Applying this Lemma to the problem (2.50),(2.51) with ε = 0, δ = 0,
G = N1, we obtain that for all t,∈ [0, T ] and λ ∈ [0, λ̂):

σ(λ, t) ≤ const. (2.64)
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From (2.52), (2.64) we establish the correlation
∫ ∞

0
(exp(λx)− 1)cn(x, t)dx ≤ const, 0 ≤ λ < λ̂, 0 ≤ t ≤ T, n ≥ 1. (2.65)

Consequently, (2.47) follows from (2.65) and (2.9). Hence, c ∈ Ω+(T ):
∫ ∞

0
exp(λx)c(x, t)dx ≤ const, 0 ≤ λ < λ̄, 0 ≤ t ≤ T. (2.66)

The proof of Theorem 1 is now complete.

Remark 2.1 It is worth pointing out that the solution does not belong to
Ωλ(T ) even if c0 ∈ Ωλ(0). Actually, for the constant kernels K ≡ 1, F ≡ 0
we obtain from (1.1):

dσ
dt

=
1
2
σ(t)2

where

σ(t) =
∫ ∞

0
(exp(λx)− 1)c(x, t)dx.

Hence, σ(t) → ∞ as t → 2/σ(0) < ∞. Consequently, the right ”tails”
of solutions (i.e. for large values of x) increase in time. This growth is
fast enough for the solution to leave Ωλ(T ) within a finite time but it is
sufficiently slow to remain inside Ω(T ) for all T > 0.

3 Mass conservation

Theorem 2 Let the conditions of Theorem 1 hold and suppose that r ≥ 2.
If, in addition,

∫ x

0
yF (x− y, y)dy ≤ const · (1 + xr) (3.1)

then the mass conservation law holds.

Proof. We are ready now to improve the inequality (2.40) and demonstrate
that for all t ≥ 0 the function c(x, t) yields, similarly to (2.7), the mass
conservation law

N1 =
∫ ∞

0
xc(x, t)dx = const.
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This equality holds due to the boundedness of the upper moments of c(x, t)
for all t ≥ 0 (see (2.39)). Actually, by integrating (1.1) with weight x, we
obtain

dN1(t)
dt

= − lim
n→∞

∫ n

0

∫ ∞

n−x
(xK(x, y)c(x, t)c(y, t)− xF (x, y)c(x + y, t))dydx.

Passing to the limit we obtain zero if the integrals
∫ ∞

0

∫ ∞

0
xK(x, y)c(x, t)c(y, t)dxdy and

∫ ∞

0

∫ ∞

0
xF (x, y)c(x + y, t)dxdy

are bounded. The first integral with the coagulation kernel is bounded due
to (2.1) and boundedness of the second moment N2. For the integral with
the fragmentation kernel we appeal to (2.39) and (3.1) to see that
∫ ∞

0

∫ ∞

0
xF (x, y)c(x+y, t)dydx =

∫ ∞

0
c(x, t)

∫ x

0
yF (x−y, y)dydx ≤ const(N̄0+N̄r).

This proves Theorem 2.

Remark 3.1 If at a critical time tc < ∞ the second moment N2(t) had
become infinite then the formal integration of (1.1) over [0,∞) with weight
x would give us (in the coagulation part) the indeterminance ∞ −∞
which would lead to the infringement of the mass conservation law.

Remark 3.2 In the well-known example of non-uniqueness and non-conservation
of mass [20, 24] with K ≡ 0, F ≡ 2, c0(x) = (λ + x)−3, λ > 0 there are
two solutions

c(x, t) =
exp(λt)
(λ + x)3

, c(x, t) = exp(−tx)
(

c0(x) +
∫ ∞

x
c0(y)[2t + t2(y − x)]dy

)

where the initial data does not satisfy the conditions of Theorem 2 since
r < 2 for such c0. Therefore the condition on r in Theorem 2 is optimal.

Remark 3.3 When K ≡ 0 and F (x, y) = 2(x + y) then

c(x, t) = exp(t) · (1 + x2)−2

is a solution to (1.1) which is clearly not mass conserving. For this example
we can see that from (3.1) we have r = 3, but the third moment of the
initial distribution is unbounded. This solution also demonstrates that the
hypotheses of Theorem 2 are actually the best possible conditions on the
fragmentation kernel for the mass conservation law to hold. Other examples
of solutions which are not mass conserving can be found in Stewart [21].
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4 Uniqueness theorem

Theorem 3 Let case 20 of Theorem 1 hold and suppose m1 ≤ 1. Then
the solution to the initial value problem (1.1), (1.2) is unique in the class
Ω(T ).

To prove uniqueness we use the following lemma (similar to [9]).

Lemma 4.1 Let v(λ, t) be a real continuous function having continuous par-
tial derivatives vλ and vλλ on D = {0 ≤ λ ≤ λ0, 0 ≤ t ≤ T}. Assume that
α(λ), β(λ, t), γ(λ, t) and θ(λ, t) are real and continuous on D, having con-
tinuous partial derivatives there in λ and that the functions v, vλ, β, γ are
non-negative. Suppose that the following inequalities hold on D:

v(λ, t) ≤ α(λ) +
∫ t

0
(β(λ, s)vλ(λ, s) + γ(λ, s)v(λ, s) + θ(λ, s))ds, (4.1)

vλ(λ, t) ≤ αλ(λ) +
∫ t

0

∂
∂λ

(β(λ, s)vλ(λ, s) + γ(λ, s)v(λ, s) + θ(λ, s))ds. (4.2)

Let C0 = sup0≤λ≤λ0
α, C1 = supD β, C2 = supD γ, C3 = supD θ. Then

v(λ, t) ≤ C0 exp(C2t) + (C3/C2)(exp(C2t)− 1)

in any region R ⊂ D:

R =
{

(λ, t) : 0 ≤ t ≤ t′ < T ′; λ1 − C1t ≤ λ ≤ λ0 − C1t, 0 < λ1 < λ0
}

.

where T ′ = min {λ1/C1), T}.

Proof. Let us denote the right-hand side of the inequality (4.1) by w(λ, t).
By differentiating in t, λ, we obtain from (4.1),(4.2):

wt ≤ βwλ + γw + θ ≤ c1wλ + γw + θ.

Hence for the derivative along the characteristic dλ
dt = −C1 we have

dw
dt

≤ γw + θ. (4.3)

Let us denote u(t) = C0 exp(C2t) + (C3/c2)(exp(c2t) − 1) with C0 > C0,
C3 > C3. Obviously, u(0) > w(λ, 0) for all λ ∈ [0, λ0]. Let (λ̂, t̂) be the
first point on a characteristic straight line where w = u. Then at the point
(λ̂, t̂)

d(u− w)
dt

≤ 0
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and consequently
wt − C1wλ ≥ ut. (4.4)

From ut = C2u + C3 we can easily see that at the point (λ̂, t̂) the equality
ut = C2w + C3 holds. Recalling (4.4), we obtain a contradiction with (4.3):

dw
dt

= wt − C1wλ ≥ C2w + C3 > C2w + C3 ≥ γw + θ.

This proves Lemma 4.1.
We shall prove the uniqueness of a solution c ∈ Ω+(T ) in Ω(T ) by con-

tradiction. Suppose that there are two distinct solutions c and g of the
initial value problem (1.1), (1.2) in Ω(T ). Using the notation u = |c − g|,
ψ = |c + g| and conditions (2.1), we find that

u(x, t) ≤
∫ t

0

{

1
2
k(1 + x)

∫ x

0
u(x− y, s)ψ(y, s)dy+

+
1
2
ku(x, s)

∫ ∞

0
(1 + x + y)ψ(y, s)dy +

1
2
kψ(x, s)

∫ ∞

0
(1 + x + y)u(y, s)dy

+
∫ ∞

x
F (y − x, x)u(y, s)dy +

1
2
u(x, s)

∫ x

0
F (x− y, y)dy } ds. (4.5)

Since c, g ∈ Ω(T ), we have u, ψ ∈ Ω(T ), and u, ψ ≥ 0 on Π. Let λ̂ > 0 be
chosen such that

∫ ∞

0
exp(λ̂x)u(x, t)dx ≤ const < ∞,

∫ ∞

0
exp(λ̂x)ψ(x, t)dx ≤ const < ∞ (4.6)

uniformly with respect to t, 0 ≤ t ≤ T , and let

0 ≤ λ < λ̂. (4.7)

Integration of inequality (4.5) with the weight exp(λx) yields

∫ ∞

0
exp(λx)u(x, t)dx ≤

∫ t

0

{∫ ∞

0

∫ ∞

0

1
2
k(exp(λ(x + y)) + exp(λx) + exp(λy))

·(1 + x + y)u(x, s)ψ(y, s)dxdy +
∫ ∞

0
exp(λx)u(x, s) ·

·
(∫ x

0
exp(λy − λx)F (x− y, y)dy +

1
2

∫ x

0
F (x− y, y)dy

)

dx
}

ds.
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Here we have changed the order of integration in the integral, using Fubini’s
theorem [7]. We strengthen this inequality with (2.2) with m1 ≤ 1 taken
into account:

∫ ∞

0
exp(λx)u(x, t)dx ≤ 3

2

∫ t

0

{∫ ∞

0

∫ ∞

0
k exp(λx + λy)

·(1 + x + y)u(x, s)ψ(y, s)dxdy +b
∫ ∞

0
(1 + x) exp(λx)u(x, s)dx

}

ds. (4.8)

The following inequality can similarly be proved:
∫ ∞

0
x exp(λx)u(x, t)dx ≤ 3

2

∫ t

0

{∫ ∞

0

∫ ∞

0
k exp(λx + λy)(x + y)

·(1 + x + y)u(x, s)ψ(y, s)dxdy +b
∫ ∞

0
x(1 + x) exp(λx)u(x, s)dx

}

ds. (4.9)

Let

U(λ, t) =
∫ ∞

0
exp(λx)u(x, t)dx; Ψ(λ, t) =

∫ ∞

0
exp(λx)ψ(x, t)dx.

The functions U and Ψ are analytic in the half-plane Re(λ) < λ̂ for any
fixed t, 0 ≤ t ≤ T . Let λ be on the real axis and satisfy

0 ≤ λ ≤ λ0 < λ̂. (4.10)

The inequalities (4.6) then ensure that, for any integer i ≥ 1,

sup
0≤t≤T,0≤λ≤λ0

{

∂i

∂λi U(λ, t),
∂i

∂λi Ψ(λ, t)

}

< ∞. (4.11)

Moreover, since u(x, t) and ψ(x, t) are continuous on Π and inequalities (4.6)
are satisfied, for a given ε > 0 there are corresponding numbers δ(ε) > 0
and δi(ε) > 0 such that, if 0 ≤ t, t′ ≤ T , and i ≥ 1, then

sup
0≤λ≤λ0

{|U(λ, t′)− U(λ, t)|, |Ψ(λ, t′)−Ψ(λ, t)|} < ε, |t′ − t| < δ,

sup
0≤λ≤λ0

{∣

∣

∣

∣

∣

∂i

∂λi U(λ, t′)− ∂i

∂λi U(λ, t)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∂i

∂λi Ψ(λ, t′)− ∂i

∂λi Ψ(λ, t)

∣

∣

∣

∣

∣

}

< ε,(4.12)

|t′ − t| < δi.

In fact, to show (4.12) it is enough to split the integrals in (4.6) and use the
uniform smallness of the ”tails”

∫∞
z , which holds due to (4.7), (4.10) and the
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inequality (2.25) with, for example, ψ(x) = exp(1
2(λ̂−λ0)x). It follows from

(4.11),(4.12) that U and Ψ are continuous together with all their partial
derivatives with respect to λ in D = {0 ≤ λ ≤ λ0, 0 ≤ t ≤ T}. Inequalities
(4.8),(4.9) imply that

U(λ, t) ≤ 3
2

∫ t

0
{(kΨ(λ, s)+b)Uλ(λ, s)+(kΨ(λ, s)+kΨλ(λ, s)+b)U(λ, s)}ds,

Uλ(λ, t) ≤ 3
2

∫ t

0

∂
∂λ
{(kΨ + b)Uλ + (kΨ + kΨλ + b)U(λ, s)}ds,

and U and Ψ are non-negative in D together with their partial derivatives
with respect to λ. We can thus apply Lemma 4.1 in D. Let

c1 =
3
2
(k sup

D
Ψ + b), c2 =

3
2
k sup

D
(Ψ + Ψλ) +

3
2
b.

Then U(λ, t) = 0 in the region R defined in Lemma 4.1. Since u(x, t) is
continuous, u(x, t) = 0 for 0 ≤ t ≤ t′, 0 ≤ x < ∞; hence U(λ, t) = 0 not
only in R, but for all 0 ≤ λ ≤ λ0, 0 ≤ t ≤ t′. Applying the same reasoning to
the interval [t′, 2t′], we conclude that u(x, t) = 0 for 0 ≤ t ≤ 2t′, 0 ≤ x < ∞
and, continuing this process, we establish that u(x, t) = 0 on Π, that is,
c = g on Π. This completes the proof of Theorem 3.

Remark 4.1 In the example of non-uniqueness from Remark 3.2 the initial
data does not satisfy the conditions of Theorem 3.
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